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Abstract

This paper contributes to the literature analyzing the dynamics of equity options by determining
the sensitivity of equity option returns to changes in systematic and idiosyncratic volatility (SVOL
and IVOL) of the underlying on the EU and US markets. Total volatility is split into its two
components by applying the Fama-French-Carhart model, resulting in an average SVOL of about
20 percent and an average IVOL of about 30 percent. Alternatively, we implement an exponential
GARCH model that shows average IVOL estimates between 30 percent and 45 percent. Since we aim
to consider the cross-sectional and time-series dimensions of the option returns separately, a two-
stage Fama-MacBeth-Campbell regression is implemented accounting for varying moneyness levels
and nonlinearities. In the first stage, cross-sectional regressions are run for each day in the sample.
On average, the net effect of IVOL on call option returns is significantly negative for ATM and
ITM options but positive for sufficiently OTM options. The average net effect of SVOL on call
returns is negative for ATM options as well but its behavior for OTM and ITM options varies within
the observed markets. For put option returns, the signs of the IVOL and SVOL coefficients are
consistently opposite to those for calls. The second stage is a global time-series analysis where the
first-stage coefficients are used as explanatory variables. Here, we determine their explanatory power
and estimate their corresponding risk premia. Overall, the results suggest a clearly positive SVOL
premium and show mixed results for the IVOL premium, which is negative when the regression is
applied to single options and positive when applied to portfolios.
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1 Introduction and literature review

According to data collected by FIA – the leading global trade organization for futures, options and

centrally cleared derivatives – trading activities on the option market have vastly grown in the past years.

The number of option contracts traded worldwide exploded since 2013 and increased by 461 percent to

54.53 billion contracts traded in 2022 (the number of equity option contracts increased by 479 percent

to 49.32 billion contracts traded in 2022). Most of the growth can be attributed to the option markets

in Brazil, China and India. However, the US market for equity options also expanded by 158 percent to

10.54 billion contracts in 2022 (the EU market for equity options decreased by 8 percent to 0.76 billion

contracts traded in 2022) and continues to account for the majority of trading activities worldwide.

Together with the EU market, it accounts for almost 78 percent of global open interest with 0.68 billion

contracts outstanding (global open interest amounts to 0.88 billion contracts outstanding).1

A vast strand of scientific research has been devoted to analyzing option price dynamics. Since

Black and Scholes (1973) and Merton (1973) (BSM from here) developed a formula to determine option

values, the validity of those theoretically predicted prices and the sensitivity to its determinants, such

as stock and strike prices or volatility of the underlying, has been extensively examined with empirically

observed data. A major criticism towards the BSM model is its assumption of a constant volatility of

the underlying. Empirical research showed that the observed dynamics on the option market deviate

from the one predicted by the BSM model. To overcome this issue, Heston (1993) derived a closed-form

solution for the price of European call options that incorporates stochastic volatility but still keeps most

of the characteristics featured in the BSM model.

A far less extensive portion of the scientific literature is focused on analysing option returns. Rubin-

stein (1984) was among the first to calculate the expected return of a European-style call option over a

holding period which might be shorter than its remaining time-to-maturity. His assumptions were that

the market participants agree upon a constant interest rate and assume a log-normally distributed price

of the underlying stock, where he assumes that the market price of the call option equals the value ob-

tained with the BSM formula at all times. Coval and Shumway (2001) provide empirical evidence about

the dynamics of index option returns. They use two different data sets and analyse two separate forms of

option risk. Firstly, they consider the leverage effect2 which, according to the BSM model, is reflected in

option betas. Their empirical analysis shows that call options on securities with expected returns higher

than the risk-free rate on average earn higher returns than the respective underlying security. Secondly,

they consider the curvature effect, i.e., nonlinearity of option pay-offs. In contrast to the BSM model,

they provide robust empirical evidence that options are not redundant assets and that they earn a risk

premium net of the leverage effect. Broadie et al. (2009) empirically show that expected option returns

are highly sensitive to stock volatility, that this relationship is concave and varies across different strike

prices.

Recently, several papers started developing a theoretical foundation of how volatility influences option

returns.3 Chaudhury (2017) derives a general formula for return vegas,4 which considers the effects of

systematic (SVOL) and idiosyncratic (IVOL) volatility separately. Both analytically and with numerical

simulations, the author demonstrates that an increase in IVOL leads to lower call (higher put) option

returns. At the same time, there exists a counteracting effect from changes in SVOL. The intuition behind

1See https://www.fia.org/fia/etd-tracker.
2Here, leverage refers to the fact that the option price usually changes more strongly in relative terms than the value of

the underlying asset.
3The literature related to the risk-return trade-off on the stock market is rather extensive. Ang et al. (2006) and Dennis

et al. (2006) are just two examples for studies examining the relationship between changes in volatility and the cross-section
of stock returns. Both works decompose volatility into its two components and find robust evidence for a negative effect
of systematic volatility and show mixed results for the influence of idiosyncratic volatility.

4The return vega is the first derivative of the expected option rate of return with respect to the volatility of the
underlying.
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this so-called drift effect is that more volatile stocks might be associated with higher expected prices

and, thereby, higher expected option returns. The numerical results further elaborate on how direction

and magnitude of the net effect resulting from those two opposing effects depend on the underlying asset

beta, option moneyness and maturity. For example, for call options with a time-to-maturity of more

than one year, a volatility above 30 percent and a moneyness level above 106 percent, the return vega

turns positive since the SVOL effect is strong enough to offset the negative IVOL effect. Hu and Jacobs

(2020) analytically show in the BSM framework, that the return vega is negative for call options and

positive for put options. Their predictions are empirically supported by US market data for index and

equity options over a sample period from January 1996 to July 2013. The authors alternatively consider

the stochastic volatility model by Heston (1993), where the sign of the return vega cannot be derived

analytically. However, numerical calculations for various parametrizations still show an inverse (direct)

relation between call (put) option returns and volatility.

Also recently, a new stream of empirical literature focuses on the components of underlying volatility,

i.e., SVOL and IVOL, to measure the influence of volatility on option rates of return. Cao and Han

(2013) find an alternative explanation for the inverse relationship between equity option rates of return

and IVOL of the underlying. They use a similar data set to that of Hu and Jacobs (2020). However, they

focus on delta-hedged short-term at-the-money call and put options. Thereby, the authors ensure that

their empirical results are not driven by any stock characteristics other than its IVOL. Additionally, they

empirically confirm that dealers charge a higher premium for options on stocks with high IVOL. This

extra compensation increases option prices and thereby lowers option returns. This explains the inverse

relationship that is equivalent to a negative return vega. The work of Aretz et al. (2023) also supports

the finding that expected option rates of return are not unambiguously related to their underlying asset’s

volatility. They theoretically examine this relation by taking the partial derivative of the instantaneous

expected rate of return with respect to the volatility of the underlying and then corroborate their find-

ings empirically with the help of double-sorted portfolios and regression analysis applied to single-stock

American-style call option data from January 1996 to August 2014. When splitting total volatility into

its two components, they conclude that higher IVOL reduces (raises) the expected return of call (put)

options and that the effect of higher SVOL can be positive or negative for both call and put options. In

addition, they find that the strike price influences the strengths of these two effects.

As the existing empirical evidence regarding the sensitivity of equity option rates of return to changes

in SVOL and IVOL is not extensive and rather inconclusive, the goal of our paper is to expand the results

of previous works. Firstly, our sample data consists of multiple data sets and contains the data for both

US and EU option markets (mostly American-style options). The sample period is between January

2011 and March 2021, the sample size is between 10 and 70 million single observations per data set.

Our work complements previous ones with more recent, bigger scaled samples and analysis conducted

for both option markets, i.e., the US and the EU, and option types, i.e., call and put options. We

further contribute to the existing literature by decomposing total volatility into its two components via

the Fama-French-Carhart four-factor (FFC) model and via an exponential GARCH (EGARCH) model.5

While the initial estimates (FFC model) of IVOL range from approximately 29 percent to 33 percent,

the alternative estimation (EGARCH model) presents a slightly higher average, between 30 percent to

45 percent.

In our main regressions, we follow the Fama-MacBeth-Campbell (FMC) method so that the cross-

sectional and time-series dimensions of the returns are considered separately.6 The FMC method is

a popular statistical procedure in finance research that involves a two-step regression analysis. The

first step represents a cross-sectional regression for each time period that generates a set of estimated

5See Carhart (1997) and Nelson (1991).
6See Campbell et al. (1997), pp. 215-217.
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coefficients for each factor and results in a time-series of estimated factor premia. The second step

takes the average of these estimated coefficients across time and tests if these average coefficients are

statistically different from zero. The FMC procedure helps to estimate and draw inferences about the risk

premia of the factors, which may not be constant over time. However, the standard model is adjusted to

account for varying moneyness levels, nonlinearities and liquidity controls. After estimating SVOL and

IVOL for every underlying stock, we run cross-sectional regressions of option rates of return on SVOL,

IVOL and moneyness (M) for each point in time (first step). Subsequently (second step), we run time

series regressions of option rates of return on the coefficients found in the risk step, i.e., risk premia.

Therefore, the first step determines each option’s exposure to risk components SVOL and IVOL, i.e., risk

sensitivities, and the second step determines how much an investor can earn for the exposure to these

risk sensitivities. In both steps, we control for moneyness. With respect to IVOL and at-the-money

(ATM) options, the first step results presented in the following are in accordance with previous findings

where IVOL betas are negative for call options7 and positive for put options in both the US and the

EU markets. The influence of moneyness levels is stronger compared to previous studies,8 as IVOL

sensitivities for call options are more negative for in-the-money (ITM) options and turn positive for

out-of-the-money (OTM) options with a moneyness below 82 percent to 91 percent. Conversely, IVOL

sensitivities for put options are more positive for OTM options and turn negative for ITM options with

a moneyness below 51 percent to 68 percent, respectively.

We clarify some contradictory findings in the literature and show in the first step results that the

sign of the SVOL sensitivity does not only depend on moneyness but also varies across the US and the

EU option markets. While the negative effect of SVOL for ATM call options intensifies for ITM options

on the EU market and turns positive for OTM options with a moneyness below 85 percent, it behaves

the opposite way on the US market where it intensifies for OTM options and only turns positive for ITM

options with a moneyness above 130 percent. Put option sensitivities mirror the results for call options so

that they are positive for ATM options, increasing (decreasing) with moneyness on the EU (US) market,

turning negative for ITM (OTM) options with a moneyness below 95 (above 116 ) percent. Overall, the

second step results support the explanatory power of the first step sensitivities. Our regressions show a

positive SVOL premium and mixed results for the IVOL premium, which is negative when the regression

is applied to single options and positive when applied to portfolios grouped by moneyness and IVOL. We

conduct robustness tests of our empirical results with respect to liquidity controls, alternative volatility

estimates (FFC versus EGARCH) and more restrictive data cleaning requirements.

The rest of our paper is structured as follows: While section 2 revisits the economic theory behind

option rates of return and their sensitivity to the volatility of the underlying, section 3 is devoted to the

empirical analysis of our data set. We describe the call and put option samples from the EU and US

market in section 3.1, section 3.2 explains the construction of the chosen econometric model, and section

3.3 evaluates the empirical results. Robustness tests follow in section 4 before the paper concludes in

section 5.

2 Theory on expected option rates of return

In the BSM model, the underlying stock price S follows a geometric Brownian motion with drift rate µ

and constant volatility σ. In this model, the price of a call(put) C(P ) option can be computed as:

C = S ·N(d1)−K · e−r·T ·N(d2)

P = K · e−r·T ·N(−d2)− S ·N(−d1)
(2.1)

7See Aretz et al. (2023), p. 304.
8See Aretz et al. (2023), p. 309.
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where d1 =
ln( S

K )+(r+ 1
2 ·σ

2)T
σ·

√
T

and d2 = d1 − σ ·
√
T , K denotes the option strike price, T denotes the

time-to-maturity, r is the risk-free rate and N(.) denotes the standard normal cumulative distribution

function. Hu and Jacobs (2020) compute the expected option rate of return by considering the expected

option pay-off under the physical probability:9

E(RC) =
E(CT )

C
=

eµ·T
[
S ·N(d∗1)−K · e−µ·T ·N(d∗2)

]
S ·N(d1)−K · e−r·TN(d2)

E(RP ) =
E(PT )

P
=

eµ·T
[
K · e−µ·T ·N(−d∗2)− S ·N(−d∗1)

]
K · e−r·T ·N(−d2)− S ·N(−d1)

(2.2)

where d∗1 =
ln( S

K )+(µ+ 1
2 ·σ

2)T
σ·

√
T

and d∗2 = d∗1 − σ ·
√
T .

The sensitivity of the option price to changes in the volatility of the underlying is represented by the

price vega Vprice and reads as:

Vprice =
∂C

∂σ
=

∂P

∂σ
= S · n(d1) ·

√
T > 0 (2.3)

where n(.) denotes the standard normal density function. Here, Vprice is positive for any call or put

option. However, the derivation of the option rate of return with respect to volatility is more complex.

Hu and Jacobs (2020) derive the return vega Vreturn as follows, thereby implicitly only considering

idiosyncratic risk of the underlying:10

Vreturn
C =

∂E(RC)

∂σ
=

eµ·T · S ·
√
T · EX

[C]2
< 0withEX = n(d∗1) · C − n(d1) · E(CT ) · e−µ·T < 0

Vreturn
P =

∂E(RP )

∂σ
=

eµ·T · S ·
√
T ·B

[P ]2
> 0withB = n(−d∗1) · P − n(−d1) · E(PT ) · e−µ·T > 0

(2.4)

Chaudhury (2017) generalizes these results by considering systematic and idiosyncratic risk of the

underlying. By defining the drift rate as µ = r+λ ·σ where λ is the (positive) systematic risk premium,

he shows:

Vreturn
C =

∂E(RC)

∂σ
=

XC · er·T

[EQ(CT )]2
withXC = er·T+µ·T · S ·

√
T︸ ︷︷ ︸

>0

·
[
EX︸︷︷︸
<0

+C ·N(d∗1) · λ ·
√
T︸ ︷︷ ︸

>0

]

Vreturn
P =

∂E(RP )

∂σ
=

XP · er·T

[EQ(PT )]2
withXP = er·T+µ·T · S ·

√
T︸ ︷︷ ︸

>0

·
[

B︸︷︷︸
>0

−P ·N(−d∗1) · λ ·
√
T︸ ︷︷ ︸

>0

] (2.5)

where EQ(CT ) = C · er·T and EQ(PT ) = P · er·T . The signs of XC and XP determine the signs of

Vreturn
C and Vreturn

P , respectively.11 The author relates the terms XC and XP to the terms EX and B

from Hu and Jacobs (2020), for which the signs are known. Hence, the signs of XC and XP depend on

the relative size of the terms C · N(d∗1) · λ ·
√
T and P · N(−d∗1) · λ ·

√
T , which describe the drift effect.

Only if the drift effect is small, i.e., |EX| > C · N(d∗1) · λ ·
√
T and |B| > P · N(−d∗1) · λ ·

√
T , Vreturn

C

and Vreturn
P keep their respective negative and positive sign as in equation 2.4. This suggests that the

volatility component determines the effect on option rates of return.12

Aretz et al. (2023) emphasize the ambiguous nature of the option return vega. They assume a

two-period, continuous-pay-off stochastic discount factor model with a log-normally distributed future

pay-off of the underlying and of the future realization of the stochastic discount factor. By deriving the

9See Hu and Jacobs (2020), p. 1029.
10See Hu and Jacobs (2020), p. 1030.
11See Chaudhury (2017), pp. 1-2.
12See Chaudhury (2017), p. 4.
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return vega in this framework, the authors show that the expected return of a European call option

unambiguously increases with the strike price and decreases with the drift rate and IVOL. However, the

sign of the return vega can only be determined for certain moneyness levels. It is positive for ATM and

ITM call options, but remains unclear for OTM options. This result can be explained by two effects.

Firstly, there is an omega effect. It describes how expected option returns are affected by the option

elasticity, called the option omega. Aretz et al. (2023) show that the omega effect is always negative

for changes in SVOL and IVOL. Secondly, there is the underlying asset effect. This effect influences

expected option rates of return via the expected rate of return of the underlying. Whether the effect

is positive or negative depends on the sign of the derivative of the underlying asset’s expected rate of

return with respect to the respective volatility component. It is positive for SVOL, however, it is nearly

zero for IVOL. Hence, the total effect, which is the sum of omega effect and underlying asset effect, is

negative for IVOL and depends on the trade-off between the two oppositely-signed effects for SVOL.13

3 Empirical analysis

3.1 Data

Option data is obtained from IVolatility.com. The sample period is from January 2011 to March 2021.

Data for the Fama-French factors and the risk-free rate of return are obtained from Kenneth French’s

website for the corresponding time period. Each individual option in the data set is uniquely identified

by the company name of its underlying stock, its strike price and its expiration date. Time-to-maturity,

calculated in business days, is the difference between expiration and observation date. The closing stock

price of the underlying S is used to compute the daily stock return as rt = St

St−1
− 1. We apply the

following filters to increase the data quality. Only options with positive bid and ask prices as well as

positive trading volume and open interest are kept in the sample. We consider only options that have

not reached their expiration date yet. We remove options that have a higher bid price than ask price

from our analysis. Later in the analysis, we further exclude observations that show abnormally high

returns (above 300 percent per day). Additionally, we leave out observations that lead to low sample

sizes for a regression (less than 30 observations per single regression). The original data set contains

data for the EU and US market separately, abbreviated by EU * and US *, respectively. The data for

European-style equity options is too small to obtain a decent sample size. Therefore, we only report

results for American-style options.

The option rate of return Ri,t for option i at time t is calculated as follows:

Ri,t =
Pi,t

Pi,t−1
− 1 (3.1)

where the option price Pi,t is the average of bid and ask prices. Moneyness M is defined as the ratio

of the underlying stock’s closing price S and the option’s strike price K at the starting point of the

corresponding time series. For moneyness levels 1.025 ≥ M ≥ 0.975, we refer to ATM options, call

options with M > 1.025 represent ITM options and with M < 0.975, they represent OTM options. The

opposite holds for put options.

Descriptive statistics for the analysed samples are depicted in table 3.1. In accordance with previous

studies, the mean daily returns of American-style call options are positive, although their lower quartiles

are negative. When converted to monthly returns, our samples show values at the level of 15.8 percent

to 18.2 percent and are, thereby, at a comparable level to those found by Hu and Jacobs (2020) and

Aretz et al. (2023) with 11.1 percent and 14.6 percent, respectively. The mean daily returns of American-

13See Aretz et al. (2023), p. 2.
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Table 3.1: Descriptive statistics of option samples

Daily Return Moneyness Maturity Volume Open Interest

EU Market, American Calls (EU AC, n = 9 891 360 )
Mean 0.0069 1.6617 125 115 2504
Std Deviation 0.2375 6.395 29 182 729 7985
25%-Quartile −0.0858 0.8867 26.0000 4.0000 69.0000
50%-Quartile −0.0044 0.9676 64.0000 15.0000 328.0000
75%-Quartile 0.0668 1.0415 159.0000 50.0000 1689.0000

EU Market, American Puts (EU AP, n = 10 842 793 )
Mean −0.0010 1.3064 117 110 2631
Std Deviation 0.2171 3.0266 166 762 7834
25%-Quartile −0.0791 0.9456 25.0000 4.0000 67.0000
50%-Quartile −0.0087 1.0316 60.0000 12.0000 322.0000
75%-Quartile 0.0506 1.1347 149.0000 50.0000 1761.0000

US Market, American Calls (US AC, n = 70 843 968 )
Mean 0.0080 1.1226 85 144 1792
Std Deviation 0.2965 8.8411 114 181 9151
25%-Quartile −0.1080 0.8870 14.0000 3.0000 60.0000
50%-Quartile −0.0054 0.9723 36.0000 12.0000 251.0000
75%-Quartile 0.0801 1.0422 109.0000 51.0000 1039.0000

US Market, American Puts (US AP, n = 55 239 132 )
Mean −0.0105 1.1637 75 107 1558
Std Deviation 0.3034 4.5291 105 831 7188
25%-Quartile −0.1264 0.9782 13.0000 3.0000 55.0000
50%-Quartile −0.0203 1.0415 30.0000 11.0000 219.0000
75%-Quartile 0.0580 1.1470 95.0000 44.0000 910.0000

This table reports descriptive statistics for all sub samples with their sample size n. Daily
return is defined by equation 3.1, moneyness is the ratio S/K, maturity is the time-to-
maturity in business days, volume is the daily trading volume as the number of options
traded, and open interest as the number of currently active options, i.e., traded but not
yet closed by an offsetting trade or an exercise.

style put options in our sample are negative. Both American call and put option samples show average

moneyness levels of above 1.025, corresponding to ITM call and OTM put options. Further, the samples

cover a wide range of different options with respect to maturities, trading volume and open interest.

On average, data for the EU market shows longer time-to-maturities, slightly lower trading volumes

and higher open interest than the larger sample for the US market. With 71 million observations for

call options and 55 million observations for put options, the US samples size is five to seven times higher

than the EU samples with 10 million call and 11 million put observations.

3.2 Model construction

As a preparatory work in our analysis, we apply the FFC approach in time series analyses of daily stock

returns r to estimate SVOLi and IVOLi for each option’s underlying i:

ri,t = αFFC
i + βmkt

i · (rmkt,t − rf,t) + βsmb
i · rsmb,t + βhml

i · rhml,t + βmom
i · rmom,t + εi,t (3.2)

where rmkt,t − rf,t denotes the market excess return, rsmb,t is the size factor, rhml,t is the value factor

and rmom,t is the monthly momentum factor. We use the factor returns for the US and EU markets,

correspondingly. IVOLi is estimated as the annualized standard deviation of the residuals εi,t and SVOLi

as the annualized standard deviation of the fitted values ri,t − εi,t.

Alternatively, we estimate IVOLi by implementing the EGARCH model to capture the time-varying

nature of volatility. Here, IVOLi equals the one-period-ahead predicted idiosyncratic volatility based on:

εi,t ∼ N (0, σ2
i,t)

lnσ2
i,t = αEGARCH

i +

p∑
l=1

bi,l · lnσ2
i,t−l +

q∑
k=1

ci,k ·
(
θi ·

εi,t−k

σi,t−k
+ γi ·

(∣∣∣∣ εi,t−k

σi,t−k

∣∣∣∣−√
2/π

))
(3.3)

To account for differences among the underlying stocks, an individual EGARCH model is estimated for

nine combinations of the parameters p and q in equation 3.3, whereby p and q can each take the values
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1, 2 or 3. Subsequently, the (p, q)-combination with the lowest Akaike Information Criteria (AIC) is

selected to estimate the expected IVOL of each individual stock i. This approach is popular in the

literature related to stock return analyses.14 Based on the EGARCH residuals, SVOLi and IVOLi are

again estimated as the annualized standard deviation of the residuals and of the fitted values, respectively.

Our goal is to examine the explanatory power of option risk sensitivities. For this, we apply the

FMC procedure. As the first step of our analysis, we analyse the sensitivity of option rates of return R

with respect to SVOL and IVOL, accounting for the moneyness level M . Here, we employ the following

cross-sectional regressions for each t:15

Rji,t = αCS
t + βSV OL

t · SVOLi + βIV OL
t · IVOLi + βM

t ·Mji,t + ηji,t (3.4)

where Rji,t is the rate of return of option j written on the underlying stock i at point in time t and ηji,t

is the corresponding residual. The idea is to identify the time effect of risk sensitivities on option rates

of return. Both SVOL and IVOL measure individual risks of the underlying, however, are constant over

time. Therefore, we estimate time varying option risk sensitivities with respect to SVOL and IVOL in

a cross-sectional analysis. To control for nonlinearities, we expand this regression by adding interaction

and squared terms to the right-hand-side of equation 3.4. Thus, the regressions are carried out in three

configurations, which represent base configurations in our analysis:

(i) pure, as shown in equation 3.4

(ii) interacted, by adding regressors SVOLi ·Mji,t and IVOLi ·Mji,t

Rji,t = αCS
t + βSV OL

t · SVOLi + βIV OL
t · IVOLi + βM

t ·Mji,t

+ βM ·SV OL
t ·Mji,t · SVOLi + βM ·IV OL

t ·Mji,t · IVOLi + ηji,t (3.5)

(iii) squared, by further adding the regressors SVOLi ·M2
ji,t

, IVOLi ·M2
ji,t

and M2
ji,t

Rji,t = αCS
t + βSV OL

t · SVOLi + βIV OL
t · IVOLi + βM

t ·Mji,t

+ βM ·SV OL
t ·Mji,t · SVOLi + βM ·IV OL

t ·Mji,t · IVOLi + βM2

t ·M2
ji,t

+ βM2·SV OL
t ·M2

ji,t · SVOLi + βM2·IV OL
t ·M2

ji,t · IVOLi + ηji,t (3.6)

We mitigate possible heteroscedasticity and autocorrelation in the error terms of our regression model

by applying the Newey–West adjusted standard errors method. To examine the assumption of normality

in our regression residuals, the Jarque-Bera (JB) statistic is utilized. The null-hypothesis could not be

rejected, therefore, the time-series average over all t provides feasible estimates of the beta coefficients.

The second step in our analysis is to determine the explanatory power of risk sensitivities from

equation 3.4. For this, we run time-series regressions for each individual option j. In the pure con-

figuration these regressions read as follows (analogue equations are applied to interacted and squared

configurations):

Rj,t = γTS
j + γSV OL

j · β̂SVOL
t + γIV OL

j · β̂IVOL
t + γM

j · β̂M
t + ζj,t (3.7)

where the first step coefficients β̂ reflect the influence of SVOL, IVOL and M on option rates of return

at a particular point in time t. The second step coefficients γ̂ from equation 3.7 explain the relation

14See, e.g., Fu (2009), Guo et al. (2014) and Bergbrant and Kassa (2021)
15The regressors in equations 3.2 and 3.4 differ (stock rates of returns versus option rates of return). Our samples contain

observations for about 2600 days (for the EU and US markets T is equal to 2621 and 2571 days, respectively), this amounts
to around 2600 cross-sectional regressions. Examples for the application of the FMC regressions in the analysis of stock
returns can be found, e.g., in Ang et al. (2009), Malagon et al. (2015) and Bergbrant and Kassa (2021).
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between risk sensitivities and individual option rates of return over time. Therefore, these coefficients

can be interpreted as risk premia.

Table 3.2: Descriptive statistics of option portfolios

EU AC EU AP US AC US AP

Total Observations 9,891,360 10,842,793 70,843,968 55,239,132
Number of Portfolios 45 45 50 50
Average Observations per Portfolio 219,808 240,951 1,416,879 1,104,783

Moneyness Bins

(number of

observations)

M < 0.9 2,769,313 1,989,210 19,582,866 6,483,475
M < 0.975 2,471,841 1,393,700 16,596,931 6,795,082

ATM 1,799,567 1,781,746 13,807,712 10,797,467
M > 1.025 1,213,009 2,280,453 9,524,748 12,705,452

M > 1.1 1,637,630 3,397,684 11,331,711 18,457,656

IVOL
Bins

Lower Bound 0.0736 0.0860 0.0450 0.0915
Upper Bound 0.8876 0.9195 0.9972 0.9936

Bin Size 0.0814 0.0834 0.0952 0.0902

The table reports descriptive statistics for portfolios created by sorting the option data into
five moneyness and ten IVOL bins. The boundaries for the moneyness bins are chosen around
one ATM group with 0.975 < M < 1.025 and for the IVOL bins by dividing the range of
the minimum and maximum values (lower bound and upper bound) into ten equally spaced
intervals.

A drawback of FMC procedure is known as the errors-in-variables bias. To avoid this, we apply

equation 3.7 to portfolios rather than single assets. For this, the data is sorted into five moneyness

groups and ten IVOL groups so that there are up to 50 possible portfolios. The portfolios are equally

weighted and the results of portfolio formation are described in table 3.2. All four samples contain a

wide range of moneyness and volatility levels. The US data fills all 50 portfolios and the EU data not

less than 45 portfolios with only the third highest volatility bin being empty. A much higher number of

observations is centred in the OTM bins rather than in ITM bins.

3.3 Empirical results

Figure 3.1 visualizes the estimated volatility components SVOL and IVOL according to equation 3.2

(FFC) and the alternative estimation of expected IVOL according to equation 3.3 (EGARCH). Based

on equation 3.2 for the EU market, samples show an annualized mean SVOL of around 15 percent and

an annualized mean IVOL of around 29 percent. For the US market, the estimates are slightly higher

with 23 percent and 33 percent, respectively. In general, the boxplots for the US market show a higher

dispersion than those for the EU market. Our results for call options on the US market are in line

with Aretz et al. (2023). Their mean estimates for SVOL of around 32 percent and for IVOL of around

43 percent are somewhat higher but also more dispersed with standard deviations of 21 percent and

26 percent, respectively. Based on equation 3.3 the estimates for expected IVOL show a mean value of

around 30 percent for the EU market and 45 percent for the US market. Thus, the EGARCH model gives

higher estimates with a higher degree of dispersion.

The results for the first step in our analysis can be found in table 3.3. The various regression

configurations show adjusted coefficients of determination of 2.9 percent to 4.1 percent for the EU data

and 2.2 percent to 2.7 percent for the US data. The pure configuration explains a consistently lower

proportion of the variation in option rates of return than the squared configuration. When examining

different configurations, we note the contrasting behaviour of the linear coefficients for SVOL and IVOL

in the pure versus the interacted and squared configurations. According to the top panel of table 3.3

(results for call options), the linear coefficients for SVOL and IVOL (βSVOL and βIVOL, respectively)

in the pure configuration are negative for both markets, significant (except for the IVOL coefficient

for the US market) and higher for the EU market. For the interacted and squared configurations the

linear coefficients for SVOL and IVOL are positive (except for the SVOL coefficient for the US market)

and significant (except for the IVOL coefficient in the squared configuration for the EU market). This

8



Figure 3.1: Volatility components estimates.

(a) EU AC (b) US AC

(c) EU AP (d) US AP
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Table 3.3: Cross-sectional regressions - First step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0031 -0.0673∗∗∗ -0.1509∗∗∗ 0.0058∗∗∗ -0.0155∗∗∗ -0.0414∗∗∗

(0.0025) (0.0044) (0.0255) (0.0060) (0.0105) (0.0151)
SVOL -0.0246∗∗ 0.1692∗∗∗ 0.2223∗ -0.0140∗ -0.0454∗∗∗ -0.0673∗∗∗

(0.0133) (0.0227) (0.1672) (0.0282) (0.0427) (0.0592)
IVOL -0.0109∗ 0.0489∗∗∗ 0.1232 -0.0057 0.0423∗∗∗ 0.0795∗∗∗

(0.0067) (0.0153) (0.1289) (0.0133) (0.0186) (0.0248)
M 0.0083∗∗∗ 0.0801∗∗∗ 0.1895∗∗∗ 0.0032∗∗∗ 0.0248∗∗∗ 0.0546∗∗∗

(0.0008) (0.0040) (0.0526) (0.0009) (0.0082) (0.0144)
M · SVOL -0.1985∗∗∗ -0.2199 0.0314∗∗∗ 0.0590∗∗∗

(0.0184) (0.3285) (0.0269) (0.0514)
M · IVOL -0.0593∗∗∗ -0.1548 -0.0481∗∗∗ -0.0926∗∗∗

(0.0152) (0.2602) (0.0110) (0.0200)
M2 -0.0231 -0.0031∗∗∗

(0.0268) (0.0011)
M2 · SVOL -0.0426 -0.0061∗∗∗

(0.1616) (0.0045)
M2 · IVOL 0.0219 -0.0061∗∗∗

(0.1301) (0.0016)
adjR2 0.0308 0.0351 0.0414 0.0224 0.0240 0.0261

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0121∗∗∗ 0.0538∗∗∗ 0.1504∗∗∗ -0.0198∗∗∗ 0.0020 0.0204∗∗∗

(0.0025) (0.0046) (0.0087) (0.0028) (0.0038) (0.0045)
SVOL 0.0114 -0.1502∗∗∗ -0.4265∗∗∗ 0.0019 0.0342∗∗∗ 0.0809∗∗∗

(0.0111) (0.0157) (0.0686) (0.0091) (0.0106) (0.0127)
IVOL 0.0383∗∗∗ -0.0293∗∗∗ -0.0732∗∗ 0.0275∗∗∗ -0.0227∗∗∗ -0.0537∗∗∗

(0.0063) (0.0103) (0.0334) (0.0049) (0.0068) (0.0077)
M -0.0072∗∗∗ -0.0685∗∗∗ -0.2229∗∗∗ -0.0033∗∗∗ -0.0235∗∗∗ -0.0491∗∗∗

(0.0006) (0.0028) (0.0153) (0.0002) (0.0014) (0.0025)
M · SVOL 0.1580∗∗∗ 0.6240∗∗∗ -0.0279∗∗∗ -0.0790∗∗∗

(0.0122) (0.1290) (0.0027) (0.0063)
M · IVOL 0.0572∗∗∗ 0.1333∗∗ 0.0446∗∗∗ 0.0893∗∗∗

(0.0066) (0.0689) (0.0026) (0.0044)
M2 0.0588∗∗∗ 0.0073∗∗∗

(0.0072) (0.0005)
M2 · SVOL -0.1854∗∗∗ 0.0083∗∗∗

(0.0595) (0.0006)
M2 · IVOL -0.0360 -0.0137∗∗∗

(0.0354) (0.0009)
adjR2 0.0289 0.0337 0.0408 0.0222 0.0245 0.0268

The table reports results for the first step in our analysis (equation 3.4). Volatility components are
estimated with the FFC model. The top panel refers to call options on the EU and US market. The
bottom panel shows the results for put options. Standard errors are reported in parentheses. Statis-
tical significance at the 1 percent, 5 percent, 10 percent levels are denoted by ∗∗∗, ∗∗, ∗, respectively.
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suggests that the relationship between these volatility measures and option rates of return depends

on other factors (moneyness) and their form (linear versus squared). In interaction with moneyness

M , βM ·SV OL is significantly negative for the EU market and significantly positive for the US market;

βM ·IV OL is negative and highly significant for both markets. In nonlinear interaction with moneyness

M2, βM2·SV OL is negative for both markets, however, only significant for the US market; βM2·IV OL

is positive for the EU market and negative for the US market, being again only significant for the US

market. Hence, an increase in SVOL leads to a decrease in call option rates of return at decreasing scale

that is conditional on moneyness. The same holds for the IVOL effect.

These results are in line with the theoretical proof by Aretz et al. (2023) that the influence of the

underlying risk components on option rates of return depends on moneyness. We note that the influence

of SVOL on option rates of return is different between the EU and the US markets. For the EU

market, the linear influence is positive, turns negative with interaction with moneyness and gets less

negative for deep ITM options, however, being only significant in its linear term. In contrast, for the US

market, SVOL negatively influences call option rates of return at a decreasing scale (only βM ·SV OL is

positive), all coefficients are highly significant. The different influence of SVOL on option rates of return

on the EU and the US markets can possibly be explained by structural differences of these markets.

For example, capital requirements, risk management practices and disclosure requirements are different,

which could influence the behaviour of options traders and, hence, the influence of SVOL on options

returns. Moreover, macro-economic conditions, such as interest rates, inflation, and GDP growth, differ

between the EU and US, and these differences can also affect systematic volatility. The linear coefficients

for moneyness M are positive and highly significant, lower for the US market and the highest for the

squared configuration. This suggests that the deeper in the money a call option is, the higher is its rate

of return. We note that this effect is less pronounced in the US market compared to the EU market,

what again could be attributed to the aforementioned structural differences between the two markets.

The nonlinear influence of moneyness M2 is negative for both markets, higher for the EU market and

significant only for the US market. Therefore, an increase in moneyness leads to an increase in call option

rates of return, but on a decreasing scale so that the effect becomes weaker for ITM call options.

The bottom panel of table 3.3 (results for put options) shows corresponding findings for put options.

Here, the linear coefficients for SVOL and IVOL in the pure configuration are positive for both markets,

where only the IVOL coefficients are significant. We note an intriguing flip-flop pattern in the SVOL

coefficients and again the influence on put option rates of return is different for the EU and the US

market. For the US market, the linear SVOL coefficient remains positive in both interacted and squared

configurations, however, turns negative in interaction with moneyness M and then again changes to

positive in the nonlinear interaction with moneyness M2. For the EU market, this relation is mirrored,

so that the linear SVOL coefficient is negative, becomes positive in interaction with moneyness M and

changes to negative in nonlinear interaction with moneyness M2. All coefficients are highly significant.

The linear IVOL coefficients are positive in the pure configuration, however, become negative in both

interacted and squared configurations for both markets. In interaction with moneyness M , the coefficient

βM ·IV OL is positive and highly significant for both markets in both interacted and squared configurations,

however, turns negative in the nonlinear interaction with moneyness M2 for both markets, but remains

significant only for the US market. For put options, linear moneyness coefficients are negative and highly

significant, in absolute terms lower for the US market and the highest for the squared configuration.

There is a positive and significant nonlinear influence of moneyness M2 indicating that the decreasing

effect on put option rates of return appears to be weaker for higher moneyness levels, i.e., OTM put

options. Hence, IVOL shows a negative effect on rates of return for ATM put options which becomes

more negative for higher moneyness levels and turns positive for sufficiently OTM options. This implies

a diminishing sensitivity of put option rates of return to changes in moneyness as they become deeper
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OTM options.

To further investigate the influence of SVOL and IVOL on option rates of return, we analyse volatility

slopes. We define volatility slopes as the partial derivatives of R with respect to IVOL and SVOL,

respectively, based on equation 3.6 (squared configuration):

∂R

∂ SVOL
= βSVOL + βM ·SVOL ·M + βM2·SVOL ·M2

∂R

∂ IVOL
= βIVOL + βM ·IVOL ·M + βM2·IVOL ·M2

(3.8)

Figure 3.2 (call options) and figure 3.3 (put options) visualize volatility slopes for our samples. The

left hand sides of figure 3.2 depict systematic volatility slopes for the EU market (upper graph) and the US

market (lower graph). We note there is a distinct difference between the EU and the US markets. For the

EU market, the systematic volatility slope shows a negative effect on ATM call option rates of return,

which becomes more negative with higher moneyness and positive for OTM options with moneyness

below 0.85. For the US market, the systematic volatility slope also shows a negative effect on ATM

call option rates of return. However, the slope increases (for the EU market the slope decreases) with

moneyness. This suggests that the US market is more sensitive to changes in underlying asset prices and

its deviation from the strike price. In the depicted range, the slope is negative, but it becomes positive

for ITM calls with M > 1.3 (not displayed in figure 3.2), since the interaction term M ·SVOL is positive.

In addition, the range of the systematic volatility slope is smaller for the US market than for the EU

market. The right hand side graphs of figure 3.2 depict idiosyncratic volatility slopes. For both markets,

the slope is mostly negative, decreasing with moneyness and positive only for OTM options, where signs

switch at moneyness levels between 0.82 (interacted configuration) and 0.91 (squared configuration). The

idiosyncratic volatility slopes being mostly negative in both markets reflect that individual company risk

effects options rates of return in a similar way in these markets.

Figure 3.3 displays the corresponding results for put options. In summary, they mirror the call

option results but with opposite signs. Again, the influence of moneyness shows different directions of

the systematic volatility slope for the EU and the US markets. For the EU market (upper left hand

side graph of figure 3.3), the systematic volatility slope is positive for OTM and ATM put options. It

increases with moneyness (positive interaction term M · SVOL) and turns negative for ITM put options

with moneyness below 0.95. However, for the US market (lower left hand side graph of figure 3.3), the

systematic volatility slope shows a different pattern; it decreases with moneyness (negative interaction

term M · SVOL) and becomes negative for OTM options with moneyness above 1.2. This highlights a

significant divergence in the influence of moneyness on systematic volatility and differences in downside

risk perception (since put options provide a hedge against downside risk) between the two markets . The

right hand side graphs of figure 3.3 show the corresponding idiosyncratic volatility slopes for the EU and

the US market. Both slopes are positive for ATM put options and increasing with moneyness. From table

3.3, the interacted and squared configurations show negative coefficients for IVOL, positive in interaction

with moneyness M and then negative again in interaction with nonlinear moneyness M2. Hence, the

positive influence of IVOL on put option rates of return becomes positive with increasing moneyness

but at a decreasing scale. It turns negative only for ITM put options with M below 0.51 (interacted

configuration) and 0.68 (squared configuration), respectively (not displayed in figure 3.3). The range

of idiosyncratic volatility slopes for put options is larger than for call options. Our findings related to

the behaviour of systematic and idiosyncratic volatility on the EU and the US market underscore the

risk asymmetry in markets and, therefore, the need to account for market differences and the role of

moneyness in volatility analysis.

At this point, we contrast our results to the findings of previous studies. The negative SVOL and
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IVOL betas for call options as well as the positive ones for put options in the pure configurations are in

line with the findings of Hu and Jacobs (2020). The volatility coefficient for call options in their sample

amounts to −0.389 and compares to a value of −0.446 in our sample. For put options, the volatility

coefficients are even closer with 0.590 and 0.584, respectively. Our study extends their work by breaking

down volatility components, focusing on daily instead of monthly returns, and considering a broader

range of option types across both the EU and the US market. Our finding regarding SVOL and IVOL

are also partially in line with the results of Aretz et al. (2023) – at least for call options on the US

market as they do not consider put options in their analysis. Their coefficients for the interacted terms

M · SVOL and M · IVOL are always positive, so that volatility slopes are increasing with moneyness.

However in our analysis, the coefficient of M · IVOL is negative, leading to an idiosyncratic volatility

slope that decreases with moneyness. In particular, Aretz et al. (2023) find a negative effect of SVOL

on US call option rates of return for OTM and ATM options and a positive effect only for sufficiently

ITM options. We observe the same negative effect of SVOL for ATM options and, at least for the US

market, for OTM options as well. We find a positive effect for ITM options (with moneyness above 1.3)

only for the US market, while there is no such evidence for the EU market. Related to the influence

of IVOL on call option rates of return, we confirm their results regarding the negative effect for ATM

and sufficiently ITM options. However, the positive effect for OTM call options in our sample is not

observed by other authors. In summary, our findings corroborate and extend previous research, thereby

enriching the understanding of the option rates of return dynamics, volatility, and moneyness across

different markets.

The results of the second step in our analysis (time-series regressions according to equation 3.7)

is presented in table 3.4. Compared to the first step cross-sectional regressions, the higher adjusted

coefficients of determination (between 33.4 percent to 49.6 percent for call options and 44.9 percent to

68.3 percent for put options) and high levels of F-statistics prove a high goodness-of-fit of our model, in

particular for the US data. While the focus of this part of our empirical analysis lays on the coefficients

of β̂SVOL and β̂IVOL, we note that most coefficients for moneyness beta β̂M are not significant for the

EU market but significantly negative for the US market. Further, the interaction and squared terms are

also highly significant for the US data while we observe a mixed picture for the EU data, where mainly

terms related to SVOL are significant.

The results for both call and put options suggest a significantly positive risk premium for the market

sensitivity towards SVOL. The results for the market sensitivity towards IVOL oppose those observed for

SVOL and show a significant negative risk premium. The magnitude of this effect varies for the different

samples, ranging between −0.04 for call options in the EU market and −0.20 for put options in the US

market. The observed negative risk premium for IVOL may initially appear a rather counter intuitive

finding. However, it can be understood from an insurance or hedging perspective. In this sense, it might

be beneficial for an investor to accept a negative risk premium to hold the option in order to compensate

for alternative risk and, thereby, reduce the risk of his portfolio. However, based on the JB-statistic with

consistently high values and low p-values, the null hypothesis of normally distributed regression residuals

is rejected. Non-normal residuals might indicate an inadequate model and as described in section 3.2, this

may arise due to a possible errors-in-variables bias and is mitigated by the means of portfolio formation.

The results of the regression implemented for portfolios rather than single assets are presented in

table 3.5. In contrast to the regressions run for single assets, the JB-statistics show lower values and

higher p-values, in particular, for the EU market. The null hypothesis of normally distributed errors can

not be rejected at the five percent significance level, except possibly for the pure configuration for US

put options. Further, the F-statistics and their p-values indicate an overall significance of the applied

model. The sample for call options on the EU market shows low adjusted coefficients of determination

between 12.5 percent to 48.6 percent compared to put samples that reach 60 percent to 90 percent.
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Table 3.4: Time-series regressions - Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0054∗∗∗ 0.0065∗∗∗ 0.0017 0.0098∗∗∗ 0.0144∗∗∗ 0.0201∗∗∗

(0.0015) (0.0022) (0.0028) (0.0022) (0.0023) (0.0023)

βSVOL 0.0590∗∗∗ 0.0563∗∗∗ 0.0558∗∗∗ 0.0553∗∗∗ 0.0540∗∗∗ 0.0515∗∗∗

(0.0041) (0.0043) (0.0042) (0.0058) (0.0064) (0.0068)

βIVOL -0.0407∗∗∗ -0.0414∗∗∗ -0.0432∗∗∗ -0.1294∗∗∗ -0.1389∗∗∗ -0.1366∗∗∗

(0.0084) (0.0079) (0.0075) (0.0123) (0.0149) (0.0124)

βM 0.0798 -0.0258 0.0537∗ -1.5982∗∗∗ -3.3075∗∗∗ -2.8500∗∗∗

(0.0591) (0.0712) (0.0323) (0.5855) (0.4276) (0.2935)

βM·SVOL 0.0473∗∗∗ 0.0636∗∗∗ -0.7407∗∗∗ -0.6303∗∗∗

(0.0173) (0.0081) (0.1168) (0.0784)

βM·IVOL -0.0416∗ -0.0223 -2.1608∗∗∗ -1.8152∗∗∗

(0.0253) (0.0149) (0.2830) (0.1920)

βM2
0.0143 -46.0118∗∗∗

(0.0632) (6.3884)

βM2·SVOL 0.0568∗∗∗ -12.3610∗∗∗

(0.0143) (1.7830)

βM2·IVOL -0.0296 -28.9879∗∗∗

(0.0257) (4.2297)
adjR2 0.3344 0.3381 0.3821 0.3952 0.4464 0.4959
F-statistic 200.97 143.40 113.72 209.52 164.05 169.76
p-value 0.00 0.00 0.00 0.00 0.00 0.00
JB-statistic 217.0180 171.5434 175.9686 99.1569 221.0127 133.1247
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0011 -0.0113∗∗∗ -0.0064 -0.0177∗∗∗ -0.0237∗∗∗ -0.0239∗∗∗

(0.0022) (0.0031) (0.0040) (0.0037) (0.0034) (0.0033)

βSVOL 0.0532∗∗∗ 0.0524∗∗∗ 0.0549∗∗∗ 0.0347∗∗∗ 0.0489∗∗∗ 0.0549∗∗∗

(0.0047) (0.0044) (0.0042) (0.0085) (0.0098) (0.0096)

βIVOL -0.1147∗∗∗ -0.0898∗∗∗ -0.0725∗∗∗ -0.2447∗∗∗ -0.2039∗∗∗ -0.1804∗∗∗

(0.0105) (0.0114) (0.0126) (0.0240) (0.0244) (0.0247)

βM 0.2957∗∗∗ 0.0606 -0.0372 -3.0032∗∗∗ -3.6506∗∗∗ -3.5755∗∗∗

(0.0934) (0.0737) (0.0750) (0.6065) (0.4613) (0.3615)

βM·SVOL 0.0957∗∗∗ 0.0758∗∗∗ -0.7412∗∗∗ -0.7993∗∗∗

(0.0148) (0.0144) (0.1242) (0.1093)

βM·IVOL -0.0238 -0.0548∗∗ -2.3192∗∗∗ -2.2695∗∗∗

(0.0267) (0.0230) (0.3258) (0.2764)

βM2
-0.3590∗ -54.1206∗∗∗

(0.1854) (7.4574)

βM2·SVOL 0.0732∗∗ -14.9796∗∗∗

(0.0331) (2.2032)

βM2·IVOL -0.1089∗ -34.7541∗∗∗

(0.0559) (5.0004)
adjR2 0.4492 0.4939 0.5514 0.5322 0.6210 0.6832
F-statistic 187.24 184.00 151.03 263.64 335.79 280.05
p-value 0.00 0.00 0.00 0.00 0.00 0.00
JB-statistic 847.8958 1640.2716 3554.9860 5359.5675 1545.8430 2606.7931
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table reports the results for the time-series regressions according to equation 3.7. The top panel
refers to call options and the bottom panel refers to put options. In addition to γ̂, the respective Newey-
West adjusted standard errors are reported in parentheses. Statistical significance at the 1 percent,
5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2 value, the goodness-of-fit
of the applied model can be judged by the F-statistic and the JB-statistic with the corresponding
p-values.
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Table 3.5: Portfolio time-series regressions - Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0282 0.0266∗∗∗ 0.0595∗∗∗ 0.0709∗∗∗ 0.0361 0.0520
(0.0169) (0.0059) (0.0123) (0.0142) (0.0306) (0.0591)

βSVOL 0.2381∗∗ 0.4609∗∗∗ 0.0896 2.3506∗∗∗ 2.7243∗∗∗ 2.4543∗∗∗

(0.1042) (0.0630) (0.0907) (0.2746) (0.3065) (0.3489)

βIVOL 0.5935∗∗∗ 0.3465 0.9810∗∗∗ 1.4295∗∗∗ 1.7129∗∗∗ 1.2438∗

(0.1493) (0.2992) (0.3273) (0.5104) (0.5205) (0.6965)

βM -0.4702 3.5780∗∗ -4.7256∗∗∗ -10.2363∗∗∗ -22.3687∗∗∗ -30.9904∗∗∗

(0.5664) (1.7156) (1.5059) (1.8466) (3.9924) (8.6246)

βM·SVOL 1.5382∗∗∗ -0.7143 -3.5933∗∗∗ -7.7324∗∗

(0.5566) (0.4612) (0.4139) (3.2635)

βM·IVOL 1.6277∗∗∗ -1.2832∗∗∗ -13.9218∗∗∗ -19.6370∗∗

(0.4880) (0.3898) (2.2244) (7.6809)

βM2
-23.8167∗∗∗ -518.6952∗∗

(6.0712) (208.3030)

βM2·SVOL -4.5606∗∗∗ -149.8041∗∗

(1.5429) (63.2507)

βM2·IVOL -9.5533∗∗∗ -325.6015∗∗

(2.1262) (145.1200)
R2 0.1250 0.2584 0.4862 0.6762 0.7510 0.8188
F-statistic 8.08 41.70 58.11 57.08 73.94 236.00
p-value 0.00 0.00 0.00 0.00 0.00 0.00
JB-statistic 0.6514 0.5610 0.2113 0.3179 3.0622 2.8368
p-value 0.7220 0.7554 0.8998 0.8530 0.2163 0.2421

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.1054∗∗∗ -0.0546∗∗∗ -0.1225∗∗∗ -0.0772∗∗∗ -0.1197∗∗∗ -0.2331∗∗∗

(0.0250) (0.0139) (0.0137) (0.0175) (0.0130) (0.0316)

βSVOL 0.8972∗∗ 0.4901∗∗∗ 0.8214∗∗∗ 2.0084∗∗∗ 1.6967∗∗∗ 1.4696∗∗∗

(0.3508) (0.0939) (0.1386) (0.2407) (0.3456) (0.3772)

βIVOL 2.4180∗∗∗ 0.5029 1.1365∗∗ -0.0905 -0.1262 0.2692
(0.4969) (0.5544) (0.5043) (0.4114) (0.5135) (0.4502)

βM -4.0401∗∗∗ -0.2119 -4.0776∗∗∗ -11.2948∗∗∗ -13.1497 -12.5397∗

(1.2955) (0.2108) (1.1447) (3.1175) (7.8571) (7.3237)

βM·SVOL 0.7700∗∗∗ 0.7993∗ -0.8557 -1.2712
(0.0605) (0.4005) (2.8684) (2.2551)

βM·IVOL 0.2092 -0.1758 -7.2386 -5.0245
(0.5212) (0.9478) (6.5856) (4.9400)

βM2
-13.8008∗∗ 29.0629
(5.0764) (144.8184)

βM2·SVOL 0.5949 20.0618
(1.2644) (39.6543)

βM2·IVOL -2.5097 42.3813
(2.5360) (94.5817)

R2 0.6424 0.8668 0.9219 0.8164 0.8341 0.8855
F-statistic 14.19 1305.02 5990.37 54.61 143.77 292.32
p-value 0.00 0.00 0.00 0.00 0.00 0.00
JB-statistic 1.9768 0.9488 1.6686 5.1084 2.4328 1.0004
p-value 0.3722 0.6223 0.4342 0.0778 0.2963 0.6064

The table reports the results for the time-series regressions applied to portfolios according to equation
3.7. The top panel refers to call options and the bottom panel refers to put options. In addition to γ̂,
the respective Newey-West adjusted standard errors are reported in parentheses. Statistical significance
at the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2 value, the
goodness-of-fit of the applied model is represented by the F-statistic and the JB-statistic as well as the
corresponding p-values.
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Again, both call and put options show a positive (except for the squared configuration for EU call

options) highly significant SVOL premium. Contrary to our previous results, we also observe a positive

and highly significant IVOL premium for most samples, except for US put options. However, some

exceptions to these patterns do occur. For instance, the IVOL premium for put options is not significant

in the interacted configurations for the EU market and in all configurations for the US market. The

moneyness coefficient tends to be negative with varying significance levels. In sum, our results suggest a

clearly positive SVOL premium and show mixed results for the IVOL premium, which is negative when

the regression is applied to single assets and positive when applied to portfolios.

4 Robustness Tests

In this part we analyse the robustness of the results presented in section 3.3. We consider robustness

with respect to (i) adding control variables, (ii) using alternative volatility estimates (iii) implementing

more restrictive data cleaning requirements. The empirical results for these modifications to the base

configurations according to equations 3.4, 3.5 and 3.6 can be found in the appendix.

Modification (i) expands equation 3.4 by additionally including option trading volume and open

interest as regressors.16 For the first step regressions, both call and put option samples show an improved

goodness-of-fit with higher adjusted coefficients of determination than in the base configurations and the

same signs and magnitude for moneyness betas. Table A.1 shows that SVOL and IVOL coefficients

remain unchanged for call option rates of return, except for a positive sign with nonlinear interaction

with moneyness βM2·SVOL for the US market. Coefficients are statistically significant throughout all

configurations. Moreover, table A.1 shows robust SVOL and IVOL coefficients for put options. The

magnitude of all coefficients for call and put options for both markets are very similar to those reported

in table 3.3. To sum up, the inclusion of volume and open interest neither change the main messages

outlined in section 3.3 nor provide additional information, so our results are robust to including these

control variables.

The results of the second step regressions implemented for single assets are displayed in table A.2.

For call options, the results are similar to those reported in section 3.3 for the US market, expect of

all intercepts being negative. For call options on the EU market, the moneyness pemium γM in the

interacted configuration and the IVOL premium in interaction with nonlinear moneyness γM2·IVOL in

the squared configuration are positive, however, remain insignificant. For put options on the US market,

only the linear SVOL premium in the pure configuration changed to a negative one but is insignificant

compared to table 3.3 where is it positive and significant. For put options on the EU market, γM2·IVOL

in the squared configuration changed the sign to negative but is insignificant compared to positive and

significant in table 3.3; the moneyness premium in the pure configuration remains its sing but becomes

insignificant. All coefficients are slightly lower in absolute terms except of γM2

, γM2·SVOL and γM2·IVOL

M2 in the squared configuration for the US market, these coefficients become notably lower.

Table A.3 shows a robustness test when including controls into the portfolio setting. Here, for call

options on the EU market, the moneyness premium γM in the pure configuration becomes positive but

stays insignificant. On the US market, SVOL and IVOL premia are also negative in all configurations and

highly significant. For put options on the EU market, the SVOL premium is negative (insignificant) (in

the interacted configuration), coefficients γM ·SVOL and γM ·IVOL are negative and significant, however,

the coefficient γM ·IVOL becomes positive in the squared configuration, although being insignificant.

For the US market, the SVOL premium is negative in all configurations, being significant only in the

interacted configuration, in the interaction with both linear and nonlinear moneyness, it keeps the sign

16Liquidity controls are often used for robustness purposes in the analysis of both stock and option rates of return. See,
e.g., Malagon et al. (2018) or Aretz et al. (2023).
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but becomes highly significant. In the squared configuration, the IVOL premium becomes negative and

the moneyness premium becomes positive. In general, all coefficients for US put options become highly

significant.

Modification (ii) uses EGARCH estimates according to equation 3.3 instead of FFC estimates for

idiosyncratic volatility. Modified regression configurations show lower adjusted coefficients of determi-

nation for both call and put options for both markets, compared to the base configuration. For call

options, all linear SVOL coefficients are robust to EGARCH estimates for both markets, except for the

SVOL coefficient in the pure configuration for the US market, which becomes insignificant. For the EU

market, the coefficient βM2·SVOL in the squared configuration becomes significantly positive. Linear

EGARCH IVOL coefficients for call options are rather of lower magnitude than in the base configura-

tion, however, still almost all highly significant. The coefficient βM2·IVOL in the squared configuration

changes to negative for the EU market and to significantly positive for the US market. For put options

on the EU market, linear SVOL coefficients remain unchanged in general, only the coefficient in the pure

configuration becomes highly significant. For put options on the US market, linear SVOL coefficients

in the pure and interacted configuration are negative, being only significant in the pure configuration.

The linear EGARCH IVOL coefficients for put options are also lower in magnitude than in the base

configuration and are almost all highly significant as well. All other coefficients remain their sign and

significance level, expect of the βM×SVOL coefficient for the EU market which becomes insignificant.

Signs and magnitude for moneyness betas remain unchanged.

The robustness of the second step results for the single-asset setting is reported in table B.2. As in the

base configurations, there is a significantly positive SVOL premium and a significantly negative IVOL

premium, both at slightly higher magnitude in absolute terms. Again, the findings (reported in table B.3)

differ when applying regressions to portfolios. For call options, the results show positive and significant

SVOL and IVOL premia for both markets. In interaction with linear moneyness M , SVOL premium is

negative (positive) in the interacted configuration for the EU (US) market, and positive for both markets,

but only significant on the US market. In interaction with nonlinear moneyness M2, SVOL and IVOL

premia are positive for both markets, however highly significant only for the US market. In contrast

to the base configuration, this premium is negative. For put options, the SVOL premium matches our

previous results and is positive for both markets, expect for the squared configuration for the EU market.

The SVOL premium in interaction with nonlinear moneyness becomes significantly negative for the EU

market. Compared to the base configuration, the IVOL premium becomes significantly negative for the

EU market and it becomes significantly positive in the squared configuration for the US market. For the

EU market, the IVOL premium in interaction with moneyness becomes significantly negative. For the

US market, all coefficients in the squared configuration are positive and become highly significant.

Modification (iii) repeats the same analysis as in the base configuration but on slightly different data

that is subject to a more restrictive data cleaning process. For this, each single observation is checked

for major outliers and dropped out if one of the variables deviates from its respective mean by more than

three standard deviations. As in modification (i), both call and put option samples show an improved

goodness-of-fit with higher coefficients of determination than in the base configuration as well as the

same signs and magnitude of moneyness betas for the first step regressions. The results in table C.1

show SVOL and IVOL coefficients behaving equally robust as in modifications (i) and (ii), both risk

sensitivities being of higher magnitude in absolute terms. The main results of the base configuration

become clearer: For example, the effect of SVOL on call options in the US market only turns positive

for M > 2, whereas the switching point in base configurations has already been at M = 1.3. For put

options, the SVOL coefficient shows the same sign but at smaller magnitude on the EU market. Once

again, deviations appear for the US market with a negative SVOL coefficient for the pure configuration

and it turns negative at lower moneyness levels (0.71 and 0.92 instead of 1.16 and 1.21, respectively,
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for the other two configurations). The results for put options show that IVOL coefficients are positive

for all moneyness levels on the US market. For the EU market, the results are in accordance with our

previous ones, but there are deviations for the interacted configuration with the IVOL coefficient being

positive and decreasing with moneyness. Table C.2 confirms the robustness of the second step regression

results for both call and put options when treated as single assets. The coefficients for the portfolio

setting in table C.3 exhibit the same deviations from base configurations as for the EGARCH estimates

in modification (ii).

To sum up the robustness of our analysis, we confirm the consistency of a positive SVOL premium

across multiple configurations and the negative IVOL premium in the single-asset setting (significant

only for the EU market). The interaction terms with moneyness (both linear and nonlinear) in the

portfolio setting show mixed results what indicates that these relationships are complex and nonlinear.

The observed differences in the findings between the EU and the US market again confirm the differences

on both markets.

5 Conclusion

Our paper provides an in-depth empirical study of the relationship between equity option rates of return

and volatility of the underlying over time. We utilize large-scale datasets covering call and put options

on the EU and US markets from 2011 to 2021, with each sample containing up to 70 million observations.

The analysis lays the primary goal to determine the time effect of risk sensitivities on option rates of

return. Theory predicts a negative effect of volatility on call option rates of return and a positive effect

on put option rates of return as long as only idiosyncratic volatility (IVOL) is considered. However, when

simultaneously considering systematic volatility (SVOL) and IVOL, the total volatility effect depends on

further option characteristics such as moneyness or maturity and its sign is not unambiguously negative.

Our data indicate that daily option rates of return are sufficiently close to a normal distribution and

show averages at around 15.78 percent to 18.21 percent per month for call options and −0.02 percent

to −0.21 percent per month for put options. We apply the Fama-French-Carhart (FFC) model to the

respective underlying stock rates of return and split total volatility into its two components. This results

in an average SVOL of 15 percent and IVOL of 29 percent on the EU and an average SVOL of 23 percent

and IVOL of 33 percent on the US market. The alternatively implemented EGARCH model shows

average IVOL estimates of 30 percent and 45 percent, on the EU and the US market, respectively.

We employ the Fama-McBeth-Campbell (FMC) procedure to identify the sensitivity of option rates of

return to idiosyncratic and systematic volatility, accounting for various moneyness levels and nonlinear-

ities. In the first step of our analysis, one cross-sectional regression is run for each of the approximately

2600 days in the sample to obtain time series estimates for volatility and moneyness betas, i.e., the

exposure of option rates of return to volatility and moneyness risks. For call (put) options, there is

statistically significant evidence for a positive (negative) but decreasing (increasing) effect of moneyness

on option rates of return. The SVOL and IVOL coefficients are considered with respect to different

moneyness levels and, for ATM options, they are unambiguously negative for call options and positive

for put options. Further, for call options, the IVOL coefficient is decreasing with moneyness and it is

even more negative for ITM options. It only gets positive for sufficiently OTM options with moneyness

below 91 percent. On the EU market, the SVOL coefficients for call options show the same inverse rela-

tionship with moneyness (switching signs at the moneyness of 85 percent). The coefficients are increasing

with a moneyness on the US market so that they are negative for OTM options and switch to positive

for ITM options with moneyness above 130 percent. For put options, the signs of the SVOL and IVOL

coefficients consistently behave in the exact opposite way to those observed for call options, only the

tipping points in terms of moneyness between positive and negative coefficients are slightly different.
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These findings suggest potential differences in market-specific dynamics. Overall, the first step results

confirm the general trends observed in previous studies. A combined total volatility coefficient with

respect to monthly returns of ATM options in the US market of −0.446 for call options and 0.584 for

put options is consistent with the results of Hu and Jacobs (2020). Additionally, when comparing the

effects on call options with those of Aretz et al. (2023), we confirm a negative IVOL effect for ATM and

ITM options on both markets. On the US market, there is a negative SVOL effect for ATM and OTM

options and a positive one for ITM options. However, we also find a positive IVOL effect on OTM calls

in both markets, a negative SVOL effect on ITM calls and a positive one for OTM call options on the

EU market.

The second step regression is conducted as a time-series analysis using the risk sensitivities as ex-

planatory variables in order to determine their explanatory power and estimate their corresponding risk

premia. For both call and put options, the SVOL risk premium is positive and highly significant. There

is also statistically significant evidence for a negative IVOL risk premium, however, the validity of these

findings might be debatable since the regression residuals fail the JB test for normality. This may arise

due to an errors-in-variables bias and in order to address this issue, we implement an alternative regres-

sion where we sort the data into 50 equally-weighted portfolios. In this setting, the null hypothesis is

not rejected and the model is globally significant. Also here, the data suggests a positive and highly

significant SVOL risk premium – conversely though, the IVOL risk premium is now also significantly

positive.

Our findings are robust, several robustness tests confirm the main message of our findings. Including

liquidity controls or applying more restrictive data cleaning requirements improve the predictive power

of the regression models. However, the use of alternative EGARCH estimates slightly weakens their

performance. Some deviations were observed in a few configurations for the US market, the effect of

SVOL on put option rates of return is negative and the effect of IVOL on call option rates of return

already switches from negative to positive at higher moneyness levels. The second step regressions in the

single-asset setting are robust with respect to all applied modifications. Some robustness configurations

in the portfolio setting show deviations for the IVOL risk premium where it is negative compared to the

base configuration.
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Appendix: Further empirical results

A Including liquidity controls

The empirical results presented in this section are generated with the same approach as those in Table 3.3,

Table 3.4 and Table 3.5. However, the base configuration is expanded by additionally including option

trading volume and open interest as liquidity controls.

Table A.1: Cross-sectional regressions – First step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0022 -0.0691∗∗∗ -0.1555∗∗∗ 0.0055∗∗∗ -0.0158∗∗∗ -0.0418∗∗∗

(0.0025) (0.0045) (0.0232) (0.0021) (0.0025) (0.0029)
SVOL -0.0265∗∗ 0.1624∗∗∗ 0.1981 -0.0155∗ -0.0470∗∗∗ -0.0693∗∗∗

(0.0132) (0.0227) (0.1628) (0.0098) (0.0106) (0.0113)
IVOL -0.0093∗ 0.0552∗∗∗ 0.1458 -0.0055 0.0427∗∗∗ 0.0799∗∗∗

(0.0066) (0.0157) (0.1200) (0.0045) (0.0053) (0.0059)
M 0.0085∗∗∗ 0.0811∗∗∗ 0.1958∗∗∗ 0.0032∗∗∗ 0.0249∗∗∗ 0.0546∗∗∗

(0.0008) (0.0041) (0.0475) (0.0002) (0.0010) (0.0018)
M · SVOL -0.1942∗∗∗ -0.1810 0.0316∗∗∗ 0.0595∗∗∗

(0.0184) (0.3198) (0.0026) (0.0049)
M · IVOL -0.0638∗∗∗ -0.1924 -0.0482∗∗∗ -0.0928∗∗∗

(0.0158) (0.2409) (0.0018) (0.0032)
M2 -0.0257 -0.0031∗∗∗

(0.0240) (0.0002)
M2 · SVOL -0.0602 -0.0061∗∗∗

(0.1575) (0.0008)
M2 · IVOL 0.0393 0.0067∗∗∗

(0.1196) (0.0004)
Volume 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Open Interest -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗ -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
R2 0.0354 0.0396 0.0459 0.0265 0.0281 0.0301

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0131∗∗∗ 0.0526∗∗∗ 0.1515∗∗∗ -0.0200∗∗∗ 0.0019 0.0203∗∗∗

(0.0025) (0.0046) (0.0085) (0.0028) (0.0038) (0.0045)
SVOL 0.0054 -0.1551∗∗∗ -0.3899∗∗∗ -0.0002 0.0321∗∗∗ 0.0797∗∗∗

(0.0111) (0.0158) (0.0568) (0.0091) (0.0105) (0.0126)
IVOL 0.0424∗∗∗ -0.0250∗∗∗ -0.0954∗∗∗ 0.0285∗∗∗ -0.0219∗∗∗ -0.0532∗∗∗

(0.0062) (0.0100) (0.0218) (0.0049) (0.0067) (0.0077)
M -0.0072∗∗∗ -0.0684∗∗∗ -0.2281∗∗∗ -0.0033∗∗∗ -0.0237∗∗∗ -0.0494∗∗∗

(0.0006) (0.0028) (0.0142) (0.0002) (0.0014) (0.0025)
M · SVOL 0.1572∗∗∗ 0.5405∗∗∗ -0.0279∗∗∗ -0.0800∗∗∗

(0.0123) (0.1036) (0.0027) (0.0062)
M · IVOL 0.0571∗∗∗ 0.1886∗∗∗ 0.0448∗∗∗ 0.0899∗∗∗

(0.0064) (0.0386) (0.0025) (0.0044)
M2 0.0616∗∗∗ 0.0073∗∗∗

(0.0062) (0.0005)
M2 · SVOL -0.1448∗∗∗ 0.0083∗∗∗

(0.0463) (0.0006)
M2 · IVOL -0.0643∗∗∗ -0.0138∗∗∗

(0.0176) (0.0009)
Volume 0.0000 0.0000 0.0000 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Open Interest 0.0000 0.0000 0.0000∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
R2 0.0330 0.0378 0.0448 0.0269 0.0291 0.0314

The table reports results for the first step regression applied to the model described by equation 3.4.
The coefficients are derived by regressing daily option returns R on risk factors SVOL, IVOL and M
(and additional combinations in interacted and squared configurations) as well as on control variables
volume and open interest for each individual time step t and then taking the time-series average of

the single cross-sectional estimates for β̂. The top panel refers to call options and the bottom panel to
put options. In addition to β̄, the respective standard errors are reported in parentheses. Statistical
significance is judged according to the global t-statistic and the 1 percent, 5 percent, 10 percent levels
are denoted by ∗∗∗, ∗∗, ∗. The goodness-of-fit of the applied model is judged by the average R2 value.

22



Table A.2: Time-series regressions – Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept -0.0035 -0.0021 -0.0023 -0.0142∗∗∗ -0.0109∗∗∗ -0.0063∗∗∗

(0.0024) (0.0025) (0.0025) (0.0013) (0.0013) (0.0015)
SVOL 0.0464∗∗∗ 0.0437∗∗∗ 0.0457∗∗∗ 0.0213∗∗∗ 0.0217∗∗∗ 0.0235∗∗∗

(0.0049) (0.0049) (0.0044) (0.0037) (0.0043) (0.0045)
IVOL -0.0326∗∗∗ -0.0352∗∗∗ -0.0368∗∗∗ -0.0983∗∗∗ -0.0996∗∗∗ -0.0959∗∗∗

(0.0083) (0.0073) (0.0071) (0.0063) (0.0062) (0.0066)
M 0.1247 0.0452 0.0768∗∗ -1.1047∗∗∗ -1.5276∗∗∗ -1.2939∗∗∗

(0.0891) (0.0523) (0.0308) (0.1984) (0.2593) (0.2162)
M · SVOL 0.0520∗∗∗ 0.0709∗∗∗ -0.3495∗∗∗ -0.2713∗∗∗

(0.0132) (0.0091) (0.0573) (0.0552)
M · IVOL -0.0067 -0.0018 -1.0117∗∗∗ -0.8269∗∗∗

(0.0186) (0.0158) (0.1606) (0.1431)
M2 0.0596 -20.4259∗∗∗

(0.0578) (4.4503)
M2 · SVOL 0.0826∗∗∗ -5.3682∗∗∗

(0.0151) (1.2496)
M2 · IVOL 0.0057 -12.7361∗∗∗

(0.0264) (2.9474)
Volume 834.6633∗∗∗ 818.6842∗∗∗ 801.3255∗∗∗ 1662.7945∗∗∗ 1644.6688∗∗∗ 1604.2971∗∗∗

(189.2596) (184.5453) (115.6767) (83.5769) (84.3323) (84.9871)
Open Interest -14133.5494∗∗∗ -14974.1553∗∗∗ -11745.4954∗∗∗ -24186.5176∗∗∗ -22674.6436∗∗∗ -21271.7219∗∗∗

(1796.8008) (2024.4968) (1998.5205) (1628.3966) (1549.2069) (1495.90)
R2 0.4640 0.4684 0.4930 0.7095 0.7163 0.7291
F-statistic 149.62 133.49 97.40 331.92 270.48 230.74
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 2702.6373 1953.8342 635.3690 -0.0037 -0.0037 -0.0037
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0010 -0.0103∗∗∗ -0.0048 -0.0107∗∗∗ -0.0136∗∗∗ -0.0146∗∗∗

(0.0023) (0.0031) (0.0037) (0.0025) (0.0024) (0.0026)
SVOL 0.0498∗∗∗ 0.0491∗∗∗ 0.0397∗∗∗ -0.0006 0.0123∗∗ 0.0194∗∗∗

(0.0051) (0.0047) (0.0050) (0.0046) (0.0058) (0.0060)
IVOL -0.1108∗∗∗ -0.0889∗∗∗ -0.0629∗∗∗ -0.1598∗∗∗ -0.1467∗∗∗ -0.1447∗∗∗

(0.0109) (0.0112) (0.0100) (0.0107) (0.0123) (0.0144)
M 0.1909 0.0644 -0.0709 -0.4037 -1.1180∗∗∗ -1.3898∗∗∗

(0.1167) (0.0749) (0.0646) (0.3580) (0.2422) (0.1899)
M · SVOL 0.0914∗∗∗ 0.0463∗∗∗ -0.1719∗∗∗ -0.2880∗∗∗

(0.0152) (0.0124) (0.0660) (0.0532)
M · IVOL -0.0204 -0.0614∗∗∗ -0.7805∗∗∗ -0.9734∗∗∗

(0.0273) (0.0193) (0.1684) (0.1431)
M2 -0.5487∗∗∗ -19.0452∗∗∗

(0.1480) (3.6792)
M2 · SVOL -0.0009 -5.1388∗∗∗

(0.0261) (1.0897)
M2 · IVOL -0.1941∗∗∗ -12.336∗∗∗

(0.0455) (2.4531)
Volume 170.8344 183.7440 611.8111∗∗∗ 1573.1215∗∗∗ 1526.8481∗∗∗ 1457.2021∗∗∗

(119.3369) (112.0621) (50.6129) (86.6915) (86.6578) (93.6908)
Open Interest -4931.5398∗ -4204.4843 -18280.8327∗∗∗ -31599.4297∗∗∗ -27452.9441∗∗∗ -24610.9401∗∗∗

(2814.1692) (2850.6427) (2146.2212) (2701.2896) (2108.3679) (2006.5701)
R2 0.4849 0.5292 0.6490 0.8125 0.8259 0.8304
F-statistic 121.33 174.74 214.71 349.42 327.80 283.04
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 2307.8816 3200.7233 2504.5540 3663.2430 2074.9652 2350.4605
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table reports results for the second step regression according to equation 3.7. The coefficients are derived by regressing

average daily option returns R̄ on first step betas β̂SVOL, β̂IVOL and β̂M (and additional combinations in the interacted and

squared configurations) as well as β̂Volume and β̂Open Interest
t in one global time-series regression. The top panel refers to call

options and the bottom panel to put options. In addition to γ̂, the respective Newey-West adjusted standard errors are reported
in parentheses. Statistical significance at the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the
R2 value, the goodness-of-fit of the applied model is judged by the F-statistic and the JB-statistic as well as the corresponding
p-values.
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Table A.3: Portfolio regressions – Second step

EU AC US AC

pure interacted squared pure interacted squared

Intercept -0.0334 -0.0166 0.0605∗∗ -0.2240∗∗∗ -0.4638∗∗∗ -0.3574∗∗∗

(0.0209) (0.0251) (0.0269) (0.0684) (0.1143) (0.1211)
SVOL 0.0203 0.1138 0.1147 -1.5106∗∗∗ -1.4154∗∗∗ -1.0684∗∗

(0.0490) (0.1524) (0.2149) (0.3732) (0.4854) (0.4650)
IVOL 0.4166∗∗∗ 0.2406∗∗ 1.1015∗∗∗ -0.7754∗∗ -0.4769∗ -1.6757∗∗∗

(0.0912) (0.1150) (0.3190) (0.3284) (0.2747) (0.5013)
M 0.6622 3.1193∗∗ -3.2396∗∗ -28.7445∗∗∗ -21.7675∗∗∗ -38.0022∗∗∗

(0.7699) (1.4221) (1.5145) (4.2222) (2.3385) (6.9901)
M · SVOL 1.1139∗∗ -0.3162 -11.9017∗∗∗ -14.8813∗∗∗

(0.4911) (0.5594) (1.6042) (2.6606)
M · IVOL 1.6014∗∗∗ -0.5403 -18.6088∗∗∗ -30.3760∗∗∗

(0.4072) (0.4149) (1.8987) (5.8873)
M2 -17.8807∗∗∗ -727.1410∗∗∗

(5.8552) (190.5812)
M2 · SVOL -3.0277∗ -212.0742∗∗∗

(1.6463) (53.0659)
M2 · IVOL -6.9493∗∗∗ -485.5693∗∗∗

(1.9316) (130.8696)
Volume 2029.3460 5405.0539 -3771.3124 9248.5520 34169.5503∗∗∗ 5160.8048

(4353.7000) (5575.1706) (5745.8268) (9476.3142) (12064.3365) (11433.2746)
Open Interest -257132.8511∗∗∗ -208119.8072∗∗∗ -199589.6434∗∗∗ -594110.7481∗∗∗ -417690.7682∗∗∗ -663861.1664∗∗∗

(44445.7148) (46060.4359) (45573.3071) (100463.0732) (60129.0049) (127537.1081)
R2 0.3143 0.3997 0.5264 0.8752 0.9027 0.9052
F-statistic 42.58 43.90 59.69 28.11 57.60 132.25
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 3.1171 11.3297 0.4570 2.5963 2.1608 2.7708
p-value 0.2104 0.0035 0.7957 0.2730 0.3395 0.2502

EU AP US AP

pure interacted squared pure interacted squared

Intercept -0.1347∗∗∗ -0.0276∗∗∗ -0.0989∗∗∗ -0.0938∗∗∗ -0.0989∗∗∗ -0.0149
(0.0182) (0.0092) (0.0223) (0.0114) (0.0225) (0.0722)

SVOL 0.0498 -0.0455 0.4991∗∗∗ -0.0341 -1.0963∗∗∗ -0.3066
(0.1881) (0.1001) (0.1824) (0.5404) (0.2390) (0.2729)

IVOL 1.9392∗∗∗ 0.5802 1.1177∗ -0.7167∗ -1.9019∗∗∗ -0.6239∗

(0.5031) (0.4301) (0.5621) (0.3897) (0.3428) (0.3335)
M -1.6452∗ -2.5117∗∗∗ -2.7869∗∗∗ -18.2073∗∗∗ -43.1702∗∗∗ 59.7306∗∗∗

(0.9001) (0.5665) (0.6101) (1.7833) (15.2666) (14.4130)
M · SVOL -0.1035∗ 0.7007∗ -14.7683∗∗∗ 14.2962∗∗∗

(0.0610) (0.3700) (4.7912) (3.1936)
M · IVOL -0.6503∗∗ 0.1427 -31.9381∗∗∗ 38.0148∗∗∗

(0.2709) (0.8501) (11.3563) (8.6328)
M2 -6.9620∗ 1411.8989∗∗∗

(3.5690) (239.0898)
M2 · SVOL 1.3650 401.4489∗∗∗

(1.1158) (65.4884)
M2 · IVOL -0.3930 937.3408∗∗∗

(2.1850) (154.3318)
Volume 24707.5495∗∗∗ -7381.4228∗ -887.6768 11646.7695∗∗ 26988.1066∗∗∗ 1797.5691

(3300.2800) (4110.1515) (2557.6364) (4905.1425) (7652.5190) (8528.0512)
Open Interest -204768.4279∗∗∗ -428239.9832∗∗∗ -317632.4010∗∗∗ -75156.6005 34697.4750 -635365.2707∗∗∗

(74794.6658) (54023.8182) (51137.1172) (64885.9595) (105229.9821) (177718.2698)
R2 0.7844 0.9100 0.9356 0.8489 0.8813 0.9308
F-statistic 63.32 1863.79 84.57 160.22 290.31 760.11
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 2.9232 1.0217 1.6530 1.4429 14.0556 1.5004
p-value 0.2319 0.6000 0.4376 0.4861 0.0009 0.4723

The table reports results for the second step regression according to equation 3.7. The coefficients are derived by regressing equally-

weighted portfolio returns R on first step portfolio betas β̂SVOL, β̂IVOL and β̂M (and additional combinations in the interacted and

squared configurations) as well as β̂Volume and β̂Open Interest. The top panel refers to call options and the bottom panel to put
options. In addition to γ̂, the respective Newey-West adjusted standard errors are reported in parentheses. Statistical significance at
the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2 value, the goodness-of-fit of the applied model
is judged by the F-statistic and the JB-statistic as well as the corresponding p-values.
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B Alternative volatility estimates

The empirical results presented in this section are generated with the same approach as those in Table 3.3,

Table 3.4 and Table 3.5. However, the baseline model is modified by using volatility estimates based on

the EGARCH instead of the FFC model.

Table B.1: Cross-sectional regressions – First step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0020 -0.0626∗∗∗ -0.1503∗∗∗ 0.0051∗∗∗ -0.0152∗∗∗ -0.0435∗∗∗

(0.0021) (0.0038) (0.0268) (0.0020) (0.0023) (0.0028)
SVOL -0.0306∗∗∗ 0.1743∗∗∗ 0.4128∗∗∗ -0.0087 -0.0414∗∗∗ -0.0660∗∗∗

(0.0126) (0.0192) (0.0690) (0.0099) (0.0107) (0.0117)
IVOL -0.0032 0.0447∗∗∗ 0.0492 -0.0052∗∗ 0.0287∗∗∗ 0.0629∗∗∗

(0.0036) (0.0078) (0.0697) (0.0031) (0.0035) (0.0041)
M 0.0082∗∗∗ 0.0741∗∗∗ 0.1932∗∗∗ 0.0033∗∗∗ 0.0240∗∗∗ 0.0560∗∗∗

(0.0008) (0.0033) (0.0562) (0.0002) (0.0009) (0.0017)
M · SVOL -0.2037∗∗∗ -0.5704∗∗∗ 0.0324∗∗∗ 0.0638∗∗∗

(0.0148) (0.1403) (0.0027) (0.0055)
M · IVOL -0.0505∗∗∗ -0.0288 -0.0341∗∗∗ -0.0740∗∗∗

(0.0074) (0.1458) (0.0012) (0.0024)
M2 -0.0286 -0.0028∗∗∗

(0.0292) (0.0002)
M2 · SVOL 0.1155∗ -0.0070∗∗∗

(0.0743) (0.0009)
M2 · SVOL -0.0248 0.0048∗∗∗

(0.0757) (0.0003)
R2 0.0281 0.0323 0.0384 0.0180 0.0197 0.0217

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0073∗∗∗ 0.0440∗∗∗ 0.1297∗∗∗ -0.0172∗∗∗ 0.0041 0.0226∗∗∗

(0.0020) (0.0037) (0.0090) (0.0027) (0.0036) (0.0044)
SVOL 0.0347∗∗∗ -0.1310∗∗∗ -0.3787∗∗∗ -0.0217∗∗∗ -0.0110 0.0116

(0.0101) (0.0164) (0.0669) (0.0093) (0.0105) (0.0126)
IVOL 0.0087∗∗∗ -0.0118∗ -0.0221 0.0257∗∗∗ -0.0036 -0.0197∗∗∗

(0.0028) (0.0073) (0.0307) (0.0032) (0.0042) (0.0051)
M -0.0071∗∗∗ -0.0553∗∗∗ -0.1865∗∗∗ -0.0033∗∗∗ -0.0232∗∗∗ -0.0465∗∗∗

(0.0006) (0.0024) (0.0155) (0.0002) (0.0014) (0.0024)
M · SVOL 0.1537∗∗∗ 0.5243∗∗∗ -0.0075∗∗∗ -0.0307∗∗∗

(0.0126) (0.1249) (0.0029) (0.0061)
M · IVOL 0.0192∗∗∗ 0.0476 0.0261∗∗∗ 0.0477∗∗∗

(0.0060) (0.0506) (0.0015) (0.0028)
M2 0.0462∗∗∗ 0.0052∗∗∗

(0.0069) (0.0003)
M2 · SVOL -0.1223∗∗ 0.0031∗∗∗

(0.0585) (0.0008)
M2 · IVOL -0.0189 -0.0058∗∗∗

(0.0209) (0.0004)
R2 0.0250 0.0297 0.0365 0.0174 0.0194 0.0216

The table reports results for the first step regression applied to the model described by equation 3.4
and using volatility components estimated with an EGARCH model. The coefficients are derived by
regressing daily option returns R on risk factors SVOL, IVOL and M (and additional combinations
in the interacted and squared configurations) for each individual time step t and then taking the

time-series average of the single cross-sectional estimates for β̂. The top panel refers to call options
and the bottom panel to put options. In addition to β̄, the respective standard errors are reported
in parentheses. Statistical significance is judged according to the global t-statistic and the 1 percent,
5 percent, 10 percent levels are denoted by ∗∗∗, ∗∗, ∗. The goodness-of-fit of the applied model ise
judged by the average R2 value.
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Table B.2: Time-series regressions – Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0062∗∗∗ 0.0077∗∗∗ 0.0012 0.0096∗∗∗ 0.0117∗∗∗ 0.0189∗∗∗

(0.0016) (0.0021) (0.0028) (0.0023) (0.0025) (0.0027)
SVOL 0.0586∗∗∗ 0.0578∗∗∗ 0.0573∗∗∗ 0.0670∗∗∗ 0.0665∗∗∗ 0.0653∗∗∗

(0.0037) (0.0037) (0.0036) (0.0059) (0.0062) (0.0066)
IVOL -0.0538∗∗∗ -0.0505∗∗∗ -0.0648∗∗∗ -0.1484∗∗∗ -0.1524∗∗∗ -0.1437∗∗∗

(0.0141) (0.0156) (0.0126) (0.0181) (0.0229) (0.0204)
M 0.0578 -0.0497 0.0954∗∗∗ -1.5997∗∗∗ -2.2955∗∗∗ -1.8131∗∗∗

(0.0507) (0.0849) (0.0341) (0.5332) (0.3088) (0.1554)
M · SVOL 0.0476∗∗ 0.0708∗∗∗ -0.4456∗∗∗ -0.3207∗∗∗

(0.0185) (0.0071) (0.0700) (0.0459)
M · IVOL -0.0584 -0.0187 -2.0398∗∗∗ -1.5168∗∗∗

(0.0439) (0.0200) (0.2534) (0.1516)
M2 0.1337∗ -22.2877∗∗∗

(0.0794) (3.7115)
M2 · SVOL 0.0760∗∗∗ -5.6353∗∗∗

(0.0127) (1.0533)
M2 · IVOL 0.0077 -19.3724∗∗∗

(0.0357) (3.6385)
R2 0.2588 0.2597 0.2921 0.3942 0.4203 0.4653
F-statistic 116.60 74.12 49.68 197.12 151.01 143.83
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 108.5094 161.5634 138.9543 94.5744 299.5511 116.0610
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0059∗∗ -0.0185∗∗∗ -0.0107∗∗ -0.0163∗∗∗ -0.0224∗∗∗ -0.0250∗∗∗

(0.0027) (0.0033) (0.0046) (0.0038) (0.0034) (0.0034)
SVOL 0.0540∗∗∗ 0.0555∗∗∗ 0.0498∗∗∗ 0.0510∗∗∗ 0.0673∗∗∗ 0.0761∗∗∗

(0.0046) (0.0042) (0.0046) (0.0084) (0.0097) (0.0094)
IVOL -0.1533∗∗∗ -0.1161∗∗∗ -0.1071∗∗∗ -0.3112∗∗∗ -0.2271∗∗∗ -0.1933∗∗∗

(0.0224) (0.0209) (0.0213) (0.0386) (0.0434) (0.0361)
M 0.2263 -0.1259 -0.0492 -3.3064∗∗∗ -1.7388∗∗∗ -1.7137∗∗∗

(0.1791) (0.1074) (0.1055) (0.5415) (0.4807) (0.2039)
M · SVOL 0.0819∗∗∗ 0.0624∗∗∗ -0.2206 -0.2394∗∗∗

(0.0214) (0.0197) (0.1383) (0.0602)
M · IVOL -0.1113∗∗ -0.0306 -1.3069∗∗∗ -1.3292∗∗∗

(0.0503) (0.0470) (0.4925) (0.2314)
M2 -0.2613 -21.6441∗∗∗

(0.2894) (4.2967)
M2 · SVOL 0.0597 -5.4841∗∗∗

(0.0497) (1.2364)
M2 · IVOL 0.0422 -19.2035 ∗∗∗

(0.1173) (4.3580)
R2 0.2249 0.3173 0.3684 0.5343 0.5785 0.6376
F-statistic 85.78 99.47 64.36 274.94 151.76 268.73
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 1244.4931 2259.4430 3252.3616 4689.9031 1821.1360 3134.9067
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table reports results for the second step regression according to equation 3.7. The coefficients

are derived by regressing average daily option returns R̄ on first step betas β̂SVOL, β̂IVOL and β̂M

(and additional combinations in the interacted and squared configurations) in one global time-series
regression. The top panel refers to call options and the bottom panel to put options. In addition to γ̂,
the respective Newey-West adjusted standard errors are reported in parentheses. Statistical significance
at the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2 value, the
goodness-of-fit of the applied model is judged by the F-statistic and the JB-statistic as well as the
corresponding p-values.
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Table B.3: Portfolio regressions – Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0080 0.0115 0.0387∗∗∗ 0.0250 0.2586∗∗∗ 0.0563
(0.0118) (0.0129) (0.0080) (0.0203) (0.0556) (0.0770)

SVOL 0.0820∗ 0.1050∗∗∗ 0.1824∗∗ 1.2391∗∗∗ 1.1849∗∗∗ 1.9332∗∗∗

(0.0410) (0.0380) (0.0732) (0.3135) (0.1546) (0.5410)
IVOL 0.3068 0.3795 1.5882∗∗∗ 0.2913 2.0471∗∗∗ 1.3367∗∗∗

(0.4559) (0.3184) (0.3014) (0.3323) (0.4591) (0.3784)
M 0.7573 -0.4772 -0.8704 -2.9072 -23.6406∗∗∗ -0.4334

(0.4835) (1.2171) (0.5388) (2.8682) (6.4211) (1.7525)
M · SVOL -0.0479 0.1175 1.1307 1.1797∗∗

(0.3081) (0.0926) (1.4650) (0.5638)
M · IVOL 0.2155 1.3223∗∗∗ -8.3601∗ 5.4629∗∗

(0.6468) (0.3189) (4.8465) (2.1249)
M2 -1.9016 235.2962∗∗

(1.2210) (97.5196)
M2 · SVOL 0.1588 71.4137∗∗

(0.2055) (27.2092)
M2 · IVOL 1.4283∗∗ 311.0648∗∗∗

(0.6383) (97.2006)
R2 0.0992 0.1015 0.3410 0.3223 0.5464 0.7074
F-statistic 13.96 4.32 814.38 12.12 43.12 182.02
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 1.5190 1.3758 0.0043 61.4686 2.3322 0.9712
p-value 0.4679 0.5026 0.9979 0.0000 0.3116 0.6153

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0363∗∗∗ -0.1021∗∗∗ 0.0079 0.0039 -0.0589∗∗ -0.2364∗∗∗

(0.0102) (0.0248) (0.0086) (0.0183) (0.0246) (0.0280)
SVOL 0.5618∗∗∗ 0.3387∗ -0.2320∗∗∗ 1.4772∗∗∗ 1.1367∗∗∗ 2.1617∗∗∗

(0.1724) (0.1774) (0.0653) (0.2345) (0.2160) (0.3101)
IVOL -1.7830∗∗ -1.7892∗∗ -0.6750∗∗∗ -1.0302 -1.1258∗ 1.8480∗∗∗

(0.8305) (0.8186) (0.1327) (0.7213) (0.6378) (0.6559)
M -3.1720∗∗∗ -2.1985∗∗∗ 0.2112 -6.3547∗∗∗ -11.1852∗∗∗ 1.7132

(0.8389) (0.3007) (0.9678) (1.5706) (4.1399) (1.7601)
M · SVOL 0.4519 -0.4610∗∗∗ -0.8871 6.1655∗∗∗

(0.2673) (0.1640) (1.2054) (0.8179)
M · IVOL -2.6025∗∗∗ -0.6798∗ -9.4324∗ 10.6481∗∗∗

(0.5988) (0.3695) (4.8743) (2.1409)
M2 -1.1153 348.7821∗∗∗

(4.1037) (69.5549)
M2 · SVOL -1.6132∗∗ 124.7138∗∗∗

(0.7670) (22.8270)
M2 · IVOL -2.0856 388.0172∗∗∗

(1.8315) (75.2387)
R2 0.6370 0.7624 0.8911 0.7202 0.7496 0.8509
F-statistic 7.91 91.75 541.20 27.16 55.31 196.16
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 7.8030 4.5369 0.0920 1.0802 1.0469 1.0100
p-value 0.0202 0.1035 0.9551 0.5827 0.5925 0.6035

The table reports results for the second step regression according to equation 3.7. The coefficients
shown here are derived by regressing equally-weighted portfolio returns R on first step portfolio betas

β̂SVOL, β̂IVOL and β̂M (and additional combinations in the interacted and squared configurations).
The top panel refers to call options and the bottom panel to Put options. In addition to γ̂, the
respective Newey-West adjusted standard errors are reported in parentheses. Statistical significance
at the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2 value, the
goodness-of-fit of the applied model is judged by the F-statistic and the JB-statistic as well as the
corresponding p-values.
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C More restrictive data cleaning

The empirical results presented in this section are generated with the same approach as those in Table 3.3,

Table 3.4 and Table 3.5. However, the baseline model is applied to a slightly different data set which

has been adjusted for major outliers in the main variables.

Table C.1: Cross-sectional regressions – First step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept -0.0149∗∗∗ -0.1300∗∗∗ -0.2123∗∗∗ -0.0130∗∗∗ -0.0558∗∗∗ -0.0914∗∗∗

(0.0022) (0.0039) (0.0134) (0.0019) (0.0025) (0.0031)
SVOL -0.0221∗∗ 0.1361∗∗∗ 0.2788∗∗∗ -0.0247∗∗∗ -0.0547∗∗∗ -0.0703∗∗∗

(0.0115) (0.0182) (0.0573) (0.0085) (0.0098) (0.0112)
IVOL -0.0151∗∗∗ 0.1747∗∗∗ 0.2473∗∗∗ -0.0107∗∗∗ 0.0750∗∗∗ 0.1171∗∗∗

(0.0059) (0.0109) (0.0514) (0.0041) (0.0053) (0.0059)
M 0.0134∗∗∗ 0.1318∗∗∗ 0.2535∗∗∗ 0.0075∗∗∗ 0.0511∗∗∗ 0.0960∗∗∗

(0.0007) (0.0033) (0.0263) (0.0002) (0.0013) (0.0022)
M · SVOL -0.1672∗∗∗ -0.3731∗∗∗ 0.0268∗∗∗ 0.0432∗∗∗

(0.0132) (0.1178) (0.0026) (0.0056)
M · IVOL -0.1924∗∗∗ -0.3067∗∗∗ -0.0841∗∗∗ -0.1389∗∗∗

(0.0092) (0.0995) (0.0024) (0.0036)
M2 -0.0376∗∗∗ -0.0077∗∗∗

(0.0128) (0.0003)
M2 · SVOL 0.0555 -0.0035∗∗∗

(0.0629) (0.0008)
M2 · IVOL 0.0433 0.0120∗∗∗

(0.0486) (0.0005)
R2 0.0398 0.0373 0.0534 0.0280 0.0309 0.0340

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept -0.0087∗∗∗ 0.0275∗∗∗ 0.1344∗∗∗ -0.0275∗∗∗ -0.0239∗∗∗ -0.0031
(0.0022) (0.0040) (0.0083) (0.0025) (0.0036) (0.0042)

SVOL 0.0098 -0.1848∗∗∗ -0.2184∗∗∗ -0.0163∗∗ 0.0302∗∗∗ 0.1105∗∗∗

(0.0096) (0.0169) (0.0690) (0.0079) (0.0105) (0.0132)
IVOL 0.0378∗∗∗ 0.0582∗∗∗ -0.1028∗∗∗ 0.0342∗∗∗ 0.0039 -0.0084

(0.0054) (0.0127) (0.0359) (0.0045) (0.0066) (0.0077)
M -0.0206∗∗∗ -0.0538∗∗∗ -0.2361∗∗∗ -0.0113∗∗∗ -0.0149∗∗∗ -0.0548∗∗∗

(0.0007) (0.002)6 (0.0150) (0.0005) (0.0016) (0.0032)
M · SVOL 0.1862∗∗∗ 0.2597∗∗ -0.0422∗∗∗ -0.1444∗∗∗

(0.0123) (0.1312) (0.0039) (0.0098)
M · IVOL -0.0255∗∗∗ 0.2562∗∗∗ 0.0278∗∗∗ 0.0746∗∗∗

(0.0096) (0.0716) (0.0026) (0.0055)
M2 0.0758∗∗∗ 0.0185∗∗∗

(0.0069) (0.0008)
M2 · SVOL -0.0369 0.0254∗∗∗

(0.0614) (0.0018)
M2 · IVOL -0.1235∗∗∗ -0.0325∗∗∗

(0.0361) (0.0014)
R2 0.0377 0.0435 0.0518 0.0277 0.0299 0.0332

The table reports results for the first step regression applied to the model described by equation 3.4.
The coefficients shown here are derived by regressing daily option returns R on risk factors SVOL,
IVOL and M (and additional combinations in the interacted and squared configurations) for each
individual time step t and then taking the time-series average of the single cross-sectional estimates

for β̂. The top panel refers to call options and the bottom panel to put options. In addition to β̄, the
respective standard errors are reported in parentheses. Statistical significance is judged according to
the global t-statistic and the 1 percent, 5 percent, 10 percent levels are denoted by ∗∗∗, ∗∗, ∗. The
goodness-of-fit of the applied model is judged by the average R2 value.

28



Table C.2: Time-series regressions – Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0050∗∗∗ 0.0100∗∗∗ 0.0047 0.0125∗∗∗ 0.0213∗∗∗ 0.0277∗∗∗

(0.0016) (0.0028) (0.0031) (0.0023) (0.0031) (0.0027)
SVOL 0.0708∗∗∗ 0.0683∗∗∗ 0.0643∗∗∗ 0.0731∗∗∗ 0.0790∗∗∗ 0.0763∗∗∗

(0.0046) (0.0048) (0.0048) (0.0062) (0.0072) (0.0067)
IVOL -0.0541∗∗∗ -0.0523∗∗∗ -0.0447∗∗∗ -0.1288∗∗∗ -0.1304∗∗∗ -0.1284∗∗∗

(0.0085) (0.0087) (0.0085) (0.0132) (0.0159) (0.0148)
M 0.0600 -0.0531 0.1034∗∗∗ -1.0074∗∗∗ -1.5643∗∗∗ -1.8963∗∗∗

(0.0602) (0.0808) (0.0310) (0.3470) (0.2092) (0.1991)
M · SVOL 0.0593∗∗∗ 0.0876∗∗∗ -0.2176∗∗∗ -0.3428∗∗∗

(0.0199) (0.0083) (0.0511) (0.0535)
M · IVOL -0.0616∗ 0.0143 -0.9886∗∗∗ -1.1536∗∗∗

(0.0354) (0.0149) (0.1297) (0.1386)
M2 0.0459 -22.3135∗∗∗

(0.0685) (3.5070)
M2 · SVOL 0.0873∗∗∗ -5.5287∗∗∗

(0.0156) (0.9671)
M2 · IVOL 0.0272 -13.1938∗∗∗

(0.0270) (2.2950)
R2 0.3773 0.3822 0.4533 0.4022 0.4519 0.5086
F-statistic 228.26 174.76 127.87 212.16 202.64 213.06
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 266.8918 513.6195 365.5130 172.4250 413.2394 206.1739
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept 0.0025 0.0020 0.0145∗∗ -0.0201∗∗∗ -0.0203∗∗∗ -0.0067
(0.0032) (0.0054) (0.0060) (0.0041) (0.0036) (0.0042)

SVOL 0.0608∗∗∗ 0.0548∗∗∗ 0.0572∗∗∗ 0.0534∗∗∗ 0.1002∗∗∗ 0.0924∗∗∗

(0.0047) (0.0043) (0.0048) (0.0087) (0.0106) (0.0095)
IVOL -0.1367∗∗∗ -0.1091∗∗∗ -0.0714∗∗∗ -0.2173∗∗∗ -0.1605∗∗∗ -0.1025∗∗∗

(0.0110) (0.0111) (0.0113) (0.0263) (0.0274) (0.0261)
M 0.2394∗∗∗ 0.2573∗∗ 0.2156∗∗ -1.2279∗∗∗ -1.5549∗∗∗ -1.0664∗∗∗

(0.0794) (0.1083) (0.1043) (0.2262) (0.1709) (0.1256)
M · SVOL 0.1180∗∗∗ 0.1065∗∗∗ -0.0894∗ -0.0381

(0.0174) (0.0161) (0.0485) (0.0375)
M · IVOL 0.0252 0.0283 -0.8476∗∗∗ -0.4073∗∗∗

(0.0346) (0.0269) (0.1282) (0.0624)
M2 0.1651 -4.9285∗∗∗

(0.2401) (0.8010)
M2 · SVOL 0.1327∗∗∗ -0.6548∗∗∗

(0.0357) (0.1789)
M2 · IVOL 0.0642 -1.7145∗∗∗

(0.0673) (0.4363)
R2 0.4472 0.4892 0.5646 0.4667 0.5514 0.5858
F-statistic 239.10 189.53 179.51 243.76 208.72 141.06
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 1891.7001 2161.8398 3420.3981 3579.2927 2684.8383 3653.2630
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

The table reports results for the second step regression according to equation 3.7. The coefficients

shown here are derived by regressing average daily option returns R̄ on first step betas β̂SVOL, β̂IVOL

and β̂M (and additional combinations in the interacted and squared configurations) in one global time-
series regression. The top panel refers to call options and the bottom panel to put options. In addition
to γ̂, the respective Newey-West adjusted standard errors are reported in parentheses. Statistical
significance at the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2

value, the goodness-of-fit of the applied model is judged by the F-statistic and the JB-statistic as well
as the corresponding p-values.
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Table C.3: Portfolio regressions – Second step

EU AC US AC

Configuration pure interacted squared pure interacted squared

Intercept 0.0179 -0.0048 0.0125 0.1185∗∗∗ 0.0055 0.2211∗∗∗

(0.0141) (0.0141) (0.0220) (0.0116) (0.0503) (0.0324)
SVOL 0.2602∗∗ 0.5539∗∗∗ 0.4262∗∗∗ 2.8043∗∗∗ 3.1469∗∗∗ 2.0918∗∗∗

(0.1081) (0.0885) (0.0769) (0.3241) (0.3412) (0.2421)
IVOL -0.0162 -0.5532∗∗ -0.6580∗∗∗ 1.7697∗∗∗ 1.5566∗∗ -0.6060

(0.1378) (0.2234) (0.1332) (0.5485) (0.6007) (0.6272)
M -0.2945 1.9849 0.0653 -4.7331∗∗∗ -11.1106∗∗∗ -91.930∗∗∗

(0.3757) (1.2830) (0.9201) (0.6156) (1.6249) (18.458)
M · SVOL 1.2501∗∗∗ 0.9279∗∗∗ -2.1822 -19.524∗∗∗

(0.2548) (0.2728) (1.4135) (4.6866)
M · IVOL 0.1231 -0.8145∗ -7.7836∗∗∗ -59.148∗∗∗

(0.7753) (0.4448) (2.1562) (12.678)
M2 -6.4203∗∗ -1471.6∗∗∗

(2.9439) (310.61)
M2 · SVOL 0.2761 -383.55∗∗∗

(0.6854) (83.911)
M2 · IVOL -3.7188∗∗ -942.44∗∗∗

(1.3775) (203.31)
R2 0.0704 0.4252 0.6050 0.7479 0.7893 0.8704
F-statistic 2.58 46.19 188.12 51.60 53.11 50.34
p-value 0.0700 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 0.3377 4.2215 8.6763 1.4877 2.0084 1.6857
p-value 0.8447 0.1211 0.0131 0.4753 0.3663 0.4305

EU AP US AP

Configuration pure interacted squared pure interacted squared

Intercept 0.0807∗∗∗ -0.0086 -0.0167 -0.0772∗∗∗ -0.1189∗∗∗ -0.2536∗∗∗

(0.0120) (0.0519) (0.0958) (0.0191) (0.0352) (0.0421)
SVOL 1.0743∗∗∗ 1.0938∗∗∗ 0.8649∗∗ 1.5889∗∗∗ 1.6365∗∗∗ 0.8400∗∗

(0.1790) (0.1583) (0.3822) (0.2092) (0.4802) (0.3591)
IVOL -2.8107∗∗∗ -2.3272∗∗∗ -0.8095∗ -0.7522 -0.1570 -0.6829

(0.4433) (0.3209) (0.4023) (0.6318) (0.9834) (0.9054)
M 0.1364 -0.5731 -0.9694 -7.4071∗∗∗ -7.8278∗∗∗ -14.975∗∗∗

(0.4420) (0.8645) (2.0217) (1.6049) (1.3927) (2.5247)
M · SVOL 1.1489∗∗∗ 0.7965∗ 0.2881 -3.1690∗∗∗

(0.2192) (0.4276) (0.6013) (0.7656)
M · IVOL -3.0167∗∗∗ -1.4144∗∗∗ -3.008 -6.5585∗∗∗

(0.4590) (0.4504) (2.3424) (2.1826)
M2 -2.4838 -58.368∗∗∗

(5.9311) (15.726)
M2 · SVOL 0.4256 -12.872∗∗

(0.5008) (4.9703)
M2 · IVOL -1.9781 -22.0306∗∗

(1.3381) (10.637)
R2 0.7296 0.7461 0.8022 0.7788 0.7923 0.8196
F-statistic 35.31 28.30 74.20 35.23 56.80 114.91
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JB-statistic 3.4373 1.3528 0.2080 0.2335 0.2711 2.4358
p-value 0.1793 0.5084 0.9012 0.8898 0.8732 0.2959

The table reports results for the second step regression according to equation 3.7. The coefficients
shown here are derived by regressing equally-weighted portfolio returns R on first step portfolio betas

β̂SVOL, β̂IVOL and β̂M (and additional combinations in the interacted and squared configurations).
The top panel refers to call options and the bottom panel to put options. In addition to γ̂, the
respective Newey-West adjusted standard errors are reported in parentheses. Statistical significance
at the 1 percent, 5 percent, 10 percent level is denoted by ∗∗∗, ∗∗, ∗. In addition to the R2 value, the
goodness-of-fit of the applied model is judged by the F-statistic and the JB-statistic as well as the
corresponding p-values.
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